A structure with periodic dynamic load may lead to dynamic instability due to parametric resonance. In the present work, the dynamic stability analysis of laminated composite and sandwich plate due to in-plane periodic loads is studied based on recently developed inverse trigonometric zigzag theory (ITZZT). Transverse shear stress continuity at layer interfaces along with traction-free boundary conditions on the plate surfaces is satisfied by the model obviating the need of shear correction factor. An efficient C0 continuous, eight noded isoparametric element with seven field variable is employed for the dynamic stability analysis of laminated composite and sandwich plates. The boundaries of instability regions are determined using Bolotin's approach and the first instability zone is presented either in the nondimensional load amplitude–excitation frequency plane or load amplitude–load frequency plane. The influences of various parameters such as degrees of orthotropy, span-thickness ratios, boundary conditions, static load factors, and thickness ratios on the dynamic instability regions (DIRs) are studied by solving a number of problems. The evaluated results are validated with the available results in the literature based on different deformation theories. The efficiency of the present model is ascertained by the improved accuracy of predicted results at the cost of less computational involvement.

References

1.
Pai
,
P. F.
,
1995
, “
A New Look at Shear Correction Factors and Warping Functions of Anisotropic Laminates
,”
Int. J. Solids Struct.
,
32
(
16
), pp.
2295
2313
.10.1016/0020-7683(94)00258-X
2.
Noor
,
A. K.
, and
Burton
,
W. S.
,
1989
, “
Refinement of Higher-Order Laminated Plate Theories
,”
ASME Appl. Mech. Rev.
,
42
(
1
), pp.
1
13
.10.1115/1.3152418
3.
Kapania
,
R. K.
, and
Raciti
,
S.
,
1989
, “
Recent Advances in Analysis of Laminated Beams and Plates, Part II: Vibrations and Wave Propagation
,”
AIAA J.
,
27
(
7
), pp.
935
946
.10.2514/3.59909
4.
Reddy
,
J. N.
,
1990
, “
A Review of Refined Theories of Laminated Composite Plates
,”
Shock Vib. Dig.
,
22
(
7
), pp.
3
17
.10.1177/058310249002200703
5.
Mallikarjuna
, and
Kant
,
T.
,
1993
, “
A Critical Review and Some Results of Recently Developed Refined Theories of Fiber-Reinforced Laminated Composites and Sandwiches
,”
Compos. Struct.
,
23
(
4
), pp.
293
312
.10.1016/0263-8223(93)90230-N
6.
Toledano
,
A.
, and
Murakami
,
H.
,
1987
, “
Composite Plate Theory for Arbitrary Laminate Configuration
,”
ASME J. Appl. Mech.
,
54
(
1
), pp.
181
189
.10.1115/1.3172955
7.
Lu
,
X.
, and
Liu
,
D.
,
1992
, “
An Inter-Laminar Shear Stress Continuity Theory for Both Thin and Thick Laminates
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
502
509
.10.1115/1.2893752
8.
Robbins
,
D. H.
, Jr.
, and
Reddy
,
J. N.
,
1993
, “
Modeling of Thick Composites Using a Layer-Wise Laminate Theory
,”
Int. J. Numer. Methods Eng.
,
36
(
4
), pp.
655
677
.10.1002/nme.1620360407
9.
Di Sciuva
,
M
.
,
1986
, “
Bending, Vibration and Buckling of Simply Supported Thick Multilayered Orthotropic Plates: An Evaluation of New Displacement Model
,”
J. Sound Vib.
,
105
(
3
), pp.
425
444
.10.1016/0022-460X(86)90169-0
10.
Murakami
,
H
.
,
1986
, “
Laminated Composite Plate Theory With Improved Plate Theory With Improved In-Plane Responses
,”
ASME J. Appl. Mech.
,
53
(
3
), pp.
661
666
.10.1115/1.3171828
11.
Bhasker
,
K.
, and
Varadan
,
T. K.
,
1989
, “
Refinement of Higher Order Laminated Plate Theories
,”
AIAA J.
,
27
(
12
), pp.
1830
1831
.10.2514/3.10345
12.
Di Sciuva
,
M
.
,
1992
, “
Multilayered Anisotropic Plate Models With Continuous Inter-Laminar Stress
,”
Comput. Struct.
,
22
(
3
), pp.
149
167
.10.1016/0263-8223(92)90003-U
13.
Cho
,
M.
, and
Parmerter
,
R
.
,
1992
, “
An Efficient Higher-Order Plate Theory for Laminated Composites
,”
Compos. Struct.
,
20
(
2
), pp.
113
123
.10.1016/0263-8223(92)90067-M
14.
Carrera
,
E
.
,
2003
, “
Historical Review of Zig-Zag Theories for Multi-Layered Plates and Shells
,”
ASME Appl. Mech. Rev.
,
56
(
3
), pp.
287
308
.10.1115/1.1557614
15.
Di Sciuva
,
M
.
,
1995
, “
A Third Order Triangular Multilayered Plate Finite Element With Continuous Inter-Laminar Stresses
,”
Int. J. Numer. Methods Eng.
,
38
(
1
), pp.
1
26
.10.1002/nme.1620380102
16.
Cho
,
M.
, and
Parmerter
,
R.
,
1993
, “
Finite Element for Composite Plate Bending Based on Efficient Higher Order Theory
,”
AIAA J.
,
32
(
11
), pp.
2241
2245
.10.2514/3.12283
17.
Chakrabarti
,
A.
, and
Sheikh
,
A. H.
,
2004
, “
A New Triangular Element to Model Inter-Laminar Shear Stress Continuous Plate Theory
,”
Int. J. Numer. Methods Eng.
,
60
(
7
), pp.
1237
1257
.10.1002/nme.1005
18.
Pandit
,
M. K.
,
Sheikh
,
A. H.
, and
Singh
,
B. N.
,
2008
, “
An Improved Higher Order Zigzag Theory for the Static Analysis of Laminated Sandwich Plate With Soft Core
,”
Finite Elem. Anal. Des.
,
44
(
9–10
), pp.
602
610
.10.1016/j.finel.2008.02.001
19.
Pandit
,
M. K.
,
Singh
,
B. N.
, and
Sheikh
,
A. H.
,
2009
, “
Buckling of Sandwich Plates With Random Material Properties Using Improved Plate Model
,”
AIAA J.
,
47
(
2
), pp.
418
428
.10.2514/1.39180
20.
Singh
,
S.
,
Chakrabarti
,
A.
,
Bera
,
P.
, and
Sony
,
J. S. D.
,
2011
, “
An Efficient C0 FE Model for the Analysis of Composites and Sandwich Laminates With General Layup
,”
Latin Am. J. Solids Struct.
,
8
(
2
), pp.
197
212
.10.1590/S1679-78252011000200006
21.
Chalak
,
H. D.
,
Chakrabarti
,
A.
,
Iqbal
,
M. A.
, and
Sheikh
,
A. H.
,
2012
, “
An Improved C0 FE Model for the Analysis of Laminated Sandwich Plate With Soft Core
,”
Finite Elem. Anal. Des.
,
56
, pp.
20
31
.10.1016/j.finel.2012.02.005
22.
Sahoo
,
R.
, and
Singh
,
B. N.
,
2013
, “
A New Shear Deformation Theory for the Static Analysis of Laminated Composite and Sandwich Plates
,”
Int. J. Mech. Sci.
,
75
, pp.
324
336
.10.1016/j.ijmecsci.2013.08.002
23.
Sahoo
,
R.
, and
Singh
,
B. N.
,
2014
, “
Assessment of Zigzag Theories for Free Vibration Analysis of Laminated-Composite and Sandwich Plates
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
, epub.10.1177/0954410014562482
24.
Sahoo
,
R.
, and
Singh
,
B. N.
,
2013
, “
A New Inverse Hyperbolic Zigzag Theory for the Static Analysis of Laminated Composite and Sandwich Plates
,”
Compos. Struct.
,
105
, pp.
385
397
.10.1016/j.compstruct.2013.05.043
25.
Sahoo
,
R.
, and
Singh
,
B. N.
,
2014
, “
A New Trigonometric Zigzag Theory for Buckling and Free Vibration Analysis of Laminated Composite and Sandwich Plates
,”
Compos. Struct.
,
117
, pp.
316
332
.10.1016/j.compstruct.2014.05.002
26.
Bolotin
,
V. V.
,
1964
,
The Dynamic Stability of Elastic Systems
,
Holden-Day
,
San Francisco, CA
.
27.
Evan-Iwanowski
,
R. M.
,
1965
, “
On the Parametric Response of Structures
,”
ASME Appl. Mech. Rev.
,
18
, pp.
699
702
.10.1061/(ASCE)EM.1943-7889.0000643
28.
Ibrahim
,
R. A.
,
1987
, “
Structural Dynamics With Parameter Uncertainties
,”
ASME Appl. Mech. Rev.
,
40
(
3
), pp.
309
328
.10.1115/1.3149532
29.
Simitses
,
G. J.
,
1987
, “
Instability of Dynamically Loaded Structures
,”
ASME Appl. Mech. Rev.
,
40
(
10
), pp.
1403
1408
.10.1115/1.3149542
30.
Sahu
,
S. K.
, and
Datta
,
P. K.
,
2007
, “
Research Advances in the Dynamic Stability Behavior of Plates and Shells: 1987–2005
,”
ASME Appl. Mech. Rev.
,
60
(
2
), pp.
65
75
.10.1115/1.2515580
31.
Hutt
,
J. M.
, and
Salam
,
A. E.
,
1971
, “
Dynamic Stability of Plates by Finite Element Method
,”
ASCE J.
,
3
, pp.
879
899
.
32.
Deolasi
,
P. J.
, and
Datta
,
P. K.
,
1995
, “
Parametric Instability of Rectangular Plates Subjected to Localized Edge Compressing (Compression or Tension)
,”
Compos. Struct.
,
54
(1), pp.
73
82
.10.1016/0045-7949(94)E0277-9
33.
Srinivasan
,
R. S.
, and
Chellapandi
,
P.
,
1987
, “
Dynamic Stability of Rectangular Laminated Composite Plates
,”
Comput. Struct.
,
24
(
2
), pp.
233
238
.10.1016/0045-7949(86)90282-8
34.
Moorthy
,
J.
,
Reddy
,
J. N.
, and
Plaut
,
R. H.
,
1990
, “
Parametric Instability of Laminated Composite Plates With Transverse Shear Deformation
,”
Int. J. Solids Struct.
,
26
(
7
), pp.
801
811
.10.1016/0020-7683(90)90008-J
35.
Cederbaum
,
G
.
,
1991
, “
Dynamic Instability of Shear-Deformable Laminated Plates
,”
AIAA J.
,
29
(
11
), pp.
2000
2005
.10.2514/3.10830
36.
Kwon
,
Y. W.
,
1991
, “
Finite Element Analysis of Dynamic Instability of Layered Composite Plates Using a High Order Bending Theory
,”
Compos. Struct.
,
38
(
1
), pp.
57
62
.10.1016/0045-7949(91)90123-4
37.
Chattopadhay
,
A.
, and
Radu
,
A. G.
,
2000
, “
Dynamic Instability of Composite Laminates Using a Higher Order Theory
,”
Compos. Struct.
,
77
(
5
), pp.
453
460
.10.1016/S0045-7949(00)00005-5
38.
Sahu
,
S. K.
, and
Datta
,
P. K.
,
2000
, “
Dynamic Instability of Laminated Composite Rectangular Plates Subjected to Non-Uniform Harmonic In-Plane Edge Loading
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
214
(
5
), pp.
295
312
.10.1243/0954410001532079
39.
Wang
,
S.
, and
Dawe
,
D. J.
,
2002
, “
Dynamic Instability of Composite Laminated Rectangular Plates and Prismatic Plate Structures
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
17–18
), pp.
1791
1826
.10.1016/S0045-7825(01)00354-1
40.
Chakrabarti
,
A.
, and
Sheikh
,
A. H.
,
2006
, “
Dynamic Instability of Sandwich Plates Using an Efficient Finite Element Model
,”
Thin Walled Struct.
,
44
(
1
), pp.
57
68
.10.1016/j.tws.2005.09.003
41.
Aydogdu
,
M
.
,
2009
, “
A New Shear Deformation Theory for Laminated Composite Plates
,”
Compos. Struct.
,
89
(
1
), pp.
94
101
.10.1016/j.compstruct.2008.07.008
42.
Grover
,
N.
,
Singh
,
B. N.
, and
Maiti
,
D. K.
,
2013
, “
New Non-Polynomial Shear-Deformation Theories for the Structural Behavior of Laminated-Composite and Sandwich Plates
,”
AIAA J.
,
51
(
8
), pp.
1861
1871
.10.2514/1.J052399
43.
Talha
,
M.
, and
Singh
,
B. N.
,
2010
, “
Static Response and Free Vibration Analysis of FGM Plates Using Higher Order Shear Deformation Theory
,”
Appl. Math. Model.
,
34
(
12
), pp.
3991
4011
.10.1016/j.apm.2010.03.034
44.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2005
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
45.
Leissa
,
A. W.
,
1973
, “
The Free Vibration of Rectangular Plates
,”
J. Sound Vib.
,
31
(
3
), pp.
257
293
.10.1016/S0022-460X(73)80371-2
46.
Ramachandra
,
L. S.
, and
Panda
,
S. K.
,
2012
, “
Dynamic Instability of Composite Plates Subjected to Non-Uniform In-Plane Loads
,”
J. Sound Vib.
,
331
(
1
), pp.
53
65
.10.1016/j.jsv.2011.08.010
47.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
48.
Srivastava
,
A. K. L.
,
Datta
,
P. K.
, and
Sheikh
,
A. H.
,
2003
, “
Dynamic Instability of Stiffened Plates Subjected to Non-Uniform Harmonic Edge Loading
,”
J. Sound Vib.
,
262
(
5
), pp.
1171
1189
.10.1016/S0022-460X(02)01094-5
49.
Reddy
,
J. N.
,
1984
, “
A Simple Higher Order Shear Deformation Theory for Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
51
(
4
), pp.
745
753
.10.1115/1.3167719
50.
Kao
,
J. Y.
,
Chen
,
C. S.
, and
Chen
,
W. R.
,
2012
, “
Parametric Vibration Response of Foam-Filled Sandwich Plates Under Periodic Loads
,”
Mech. Compos. Mater.
,
48
(
5
), pp.
765
782
.10.1007/s11029-012-9297-z
51.
Kant
,
T.
, and
Swaminathan
,
K.
,
2001
, “
Analytical Solutions for Free Vibration of Laminated Composite and Sandwich Plates Based on a Higher-Order Refined Theory
,”
Compos. Struct.
,
53
(
1
), pp.
73
85
.10.1016/S0263-8223(00)00180-X
52.
Rao
,
M. K.
,
Scherbatiuk
,
K.
,
Desai
,
Y. M.
, and
Shah
,
A. H.
,
2004
, “
Natural Vibrations of Laminated and Sandwich Plates
,”
J. Eng. Mech.
,
130
(
11
), pp.
1268
1278
.10.1061/(ASCE)0733-9399(2004)130:11(1268)
53.
Chalak
,
H. D.
,
Chakrabarti
,
A.
,
Iqbal
,
M. A.
, and
Sheikh
,
A. H.
,
2013
, “
Free Vibration Analysis of Laminated Soft Core Sandwich Plates
,”
ASME J. Vib. Acoust.
,
135
(
1
), p. 011013.10.1115/1.4007262
54.
Zhen
,
W.
,
Wanji
,
C.
, and
Xiaohui
,
R.
,
2010
, “
An Accurate Higher Order Theory and C0 Finite Element for Free Vibration Analysis of Laminated Composite and Sandwich Plates
,”
J. Compos. Struct.
,
92
(
6
), pp.
1299
1307
.10.1016/j.compstruct.2009.11.011
You do not currently have access to this content.