This study considers the stochastic analysis of a spherical pendulum, whose bidirectional vibration is reduced by spring and damper installed in the radial direction between the point mass and the cable. Under sway motion, the centrifugal force results in the radial motion, which in its turn produces the Coriolis force to reduce sway motion. In stochastic analysis and design, the problem is that the Monte Carlo simulation is time-consuming, while the full stochastic linearization totally fails to describe the effectiveness of the spring and damper. We propose the partial linearization applied to the Coriolis damping to overcome the disadvantages of two mentioned methods. Moreover, the proposed technique can give the analytical solution of partial linearized system. A numerical simulation is performed to verify the proposed approach.

References

References
1.
Shen
,
J.
,
Sanyal
,
A. K.
,
Chaturvedi
,
N. A.
,
Bernstein
,
D.
, and
Mc-Clamroch
,
N. H.
,
2004
, “
Dynamics and Control of a 3D Pendulum
,”
43rd IEEE Conference on Decision and Control
(
CDC
), Nassau, Bahamas, Dec. 14–17, pp.
323
328
.10.1109/CDC.2004.1428650
2.
Cho
,
S.
,
Shen
,
J.
, and
McClamroch
,
N. H.
,
2003
, “
Mathematical Models for the Triaxial Attitude Control Test Bed
,”
Math. Comput. Model. Dyn. Syst.
,
9
(
2
), pp.
165
192
.10.1076/mcmd.9.2.165.16520
3.
Cho
,
S.
, and
McClamroch
,
N. H.
,
2002
, “
Feedback Control of Triaxial Attitude Control Testbed Actuated by Two Proof Mass Devices
,”
41st IEEE Conference on Decision and Control
(
CDC
), Las Vegas, NV, Dec. 10–13, pp.
498
503
.10.1109/CDC.2002.1184545
4.
Viet
,
L. D.
, and
Park
,
Y. J.
,
2011
, “
Vibration Control of the Axisymmetric Spherical Pendulum by Dynamic Vibration Absorber Moving in Radial Direction
,”
J. Mech. Sci. Technol.
,
25
(
7
), pp.
1703
1709
.10.1007/s12206-011-0418-8
5.
Anh
,
N. D.
,
Matsuhisa
,
H.
,
Viet
,
L. D.
, and
Yasuda
,
M.
,
2007
, “
Vibration Control of an Inverted Pendulum Type Structure by Passive Mass-Spring-Pendulum Dynamic Vibration Absorber
,”
J. Sound Vib.
,
307
(
1–2
), pp.
187
201
.10.1016/j.jsv.2007.06.060
6.
Viet
,
L. D.
,
2012
, “
Semi-Active On-Off Damping Control of a Dynamic Vibration Absorber Using Coriolis Force
,”
J. Sound Vib.
,
331
(
15
), pp.
3429
3436
.10.1016/j.jsv.2012.03.026
7.
Proppe
,
C.
,
Pradlwarter
,
H.
, and
Schueller
,
G.
,
2003
, “
Equivalent Linearization and Monte Carlo Simulation in Stochastic Dynamics
,”
Probab. Eng. Mech.
,
18
(
1
), pp.
1
15
.10.1016/S0266-8920(02)00037-1
8.
Socha
,
L.
,
2008
,
Linearization Methods for Stochastic Dynamic Systems
(Lecture Notes in Physics, Vol.
730
),
Springer
,
Berlin
.
9.
Lutes
,
L. D.
, and
Sarkani
,
S.
,
2004
,
Random Vibration: Analysis of Structural and Mechanical Systems
,
Elsevier
,
Amsterdam
.
10.
Ricciardi
,
G.
,
2007
, “
A Non-Gaussian Stochastic Linearization Method
,”
Probab. Eng. Mech.
,
22
(
1
), pp.
1
11
.10.1016/j.probengmech.2006.04.001
11.
Pradlwarter
,
H. J.
,
2001
, “
Non-Linear Stochastic Response Distributions by Local Statistical Linearization
,”
Int. J. Non-Linear Mech.
,
36
(
7
), pp.
1135
1151
.10.1016/S0020-7462(00)00085-8
12.
Guo
,
S. S.
,
2014
, “
Probabilistic Solutions of Stochastic Oscillators Excited by Correlated External and Parametric White Noises
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031003
.10.1115/1.4026594
13.
Elbeyli
,
O.
, and
Sun
,
J. Q.
,
2002
, “
A Stochastic Averaging Approach for Feedback Control Design of Nonlinear Systems Under Random Excitations
,”
ASME J. Vib. Acoust.
,
124
(
4
), pp.
561
565
.10.1115/1.1501084
14.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Suzuki
,
Y.
,
2001
, “
Equivalent Non-Linear System Method for Stochastically Excited and Dissipated Partially Integrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
,
36
(
5
), pp.
773
786
.10.1016/S0020-7462(00)00043-3
15.
Er
,
G. K.
,
Guo
,
S. S.
, and
Iu
,
V. P.
,
2012
, “
Probabilistic Solutions of the Stochastic Oscillators With Even Nonlinearity in Displacement
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
054501
.10.1115/1.4006230
16.
Chang
,
R. J.
, and
Lin
,
S. J.
,
2004
, “
Statistical Linearization Model for the Response Prediction of Nonlinear Stochastic Systems Through Information Closure Method
,”
ASME J. Vib. Acoust.
,
126
(
3
), pp.
438
448
.10.1115/1.1688762
17.
Spanos
,
P.
,
Failla
,
G.
, and
Di Paola
,
M.
,
2003
, “
Spectral Approach to Equivalent Statistical Quadratization and Cubicization Methods for Nonlinear Oscillators
,”
J. Eng. Mech.
,
129
(
1
), pp.
31
42
.10.1061/(ASCE)0733-9399(2003)129:1(31)
18.
Sun
,
J. Q.
,
2006
,
Stochastic Dynamics and Control
, Vol.
4
,
Elsevier
,
Amsterdam
.
You do not currently have access to this content.