Currently, there is a pressing need to detect and identify explosive materials in both military and civilian settings. While these energetic materials vary widely in both form and composition, many traditional explosives consist of a polymeric binder material with embedded energetic crystals. Interestingly, many polymers exhibit considerable self-heating when subjected to harmonic loading, and the vapor pressures of many explosives exhibit a strong dependence on temperature. In light of these facts, thermomechanics represent an intriguing pathway for the stand-off detection of explosives, as the thermal signatures attributable to motion-induced heating may allow target energetic materials to be distinguished from their more innocuous counterparts. In the present work, the thermomechanical response of a sample from this class of materials is studied in depth. Despite the nature of the material as a polymer-based particulate composite, classical Euler–Bernoulli beam theory, along with the complex modulus representation for linear viscoelastic materials, was observed to yield predictions of the thermal and mechanical responses in agreement with experimental investigations. The results of the experiments conducted using a hydroxyl-terminated polybutadiene (HTPB) beam with embedded ammonium chloride (NH4Cl) crystals are presented. Multiple excitation levels are employed and the results are subsequently compared to the work's analytical findings.

References

References
1.
Moore
,
D. S.
,
2004
, “
Instrumentation for Trace Detection of High Explosives
,”
Rev. Sci. Instrum.
,
75
(
8
), pp.
2499
2512
.10.1063/1.1771493
2.
Moore
,
D. S.
,
2007
, “
Recent Advances in Trace Explosives Detection Instrumentation
,”
Sens. Imaging Int. J.
,
8
(
1
), pp.
9
38
.10.1007/s11220-007-0029-8
3.
Kuznetsov
,
A. V.
, and
Osetrov
,
O. I.
,
2006
, “
Detection of Improvised Explosives (IE) and Explosive Devices (IED)
,”
Detection and Disposal of Improvised Explosives
,
Springer
,
Dordrecht
, pp.
7
25
.
4.
Östmark
,
H.
,
Wallin
,
S.
, and
Ang
,
H. G.
,
2012
, “
Vapor Pressure of Explosives: A Critical Review
,”
Propellants, Explos., Pyrotech.
,
37
(
1
), pp.
12
23
.10.1002/prep.201100083
5.
Ratner
,
S. B.
, and
Korobov
,
V. I.
,
1965
, “
Self-Heating of Plastics During Cyclic Deformation
,”
Polym. Mech.
,
1
(
3
), pp.
63
68
.10.1007/BF00858807
6.
Biot
,
M. A.
,
1958
, “
Linear Thermodynamics and the Mechanics of Solids
,”
Third U.S. National Congress of Applied Mechanics
, Providence, RI, June 11–14.
7.
Dimarogonas
,
A. D.
, and
Syrimbeis
,
N. B.
,
1992
, “
Thermal Signatures of Vibrating Rectangular Plates
,”
J. Sound Vib.
,
157
(
3
), pp.
467
476
.10.1016/0022-460X(92)90527-5
8.
Henneke
,
E. G.
,
Reifsnider
,
K. L.
, and
Stinchcomb
,
W. W.
,
1986
, “
Vibrothermography: Investigation, Development, and Application of a New Nondestructive Evaluation Technique
,” U.S. Army Research Office, Research Triangle Park, NC, Technical Report No. AD-A175 373.
9.
Renshaw
,
J.
,
Chen
,
J. C.
,
Holland
,
S. D.
, and
Bruce
,
T. R.
,
2011
, “
The Sources of Heat Generation in Vibrothermography
,”
NDT&E Int.
,
44
(
8
), pp.
736
739
.10.1016/j.ndteint.2011.07.012
10.
Ratner
,
S. B.
,
Korobov
,
V. I.
, and
Agamalyan
,
S. G.
,
1972
, “
Mechanical and Thermal Fracture of Plastics Under Cyclic Strains
,”
Sov. Mater. Sci.: A Transl. Fiz.-Khim. Mekh. Mater./Acad. Sci. Ukr. SSR
,
5
(
1
), pp.
66
70
.10.1007/BF00721313
11.
Katunin
,
A.
, and
Fidali
,
M.
,
2012
, “
Self-Heating of Polymeric Laminated Composite Plates Under the Resonant Vibrations: Theoretical and Experimental Study
,”
Polym. Compos.
,
33
(
1
), pp.
138
146
.10.1002/pc.22134
12.
Paripovic
,
J.
, and
Davies
,
P.
,
2013
, “
Identification of the Dynamic Behavior of Surrogate Explosive Materials
,”
ASME
Paper No. 2013-12755.10.1115/DETC2013-12755
13.
Miller
,
J. K.
, and
Rhoads
,
J. F.
,
2013
, “
Thermal and Mechanical Response of Particulate Composite Plates Under Direct Excitation
,”
ASME
Paper No. 2013-12138.10.1115/DETC2013-12138
14.
Loginov
,
N. P.
,
Muratov
,
S. M.
, and
Nazarov
,
N. K.
,
1976
, “
Initiation of Explosion and Kinetics of Explosive Decomposition Under Vibration
,”
Combust., Explos. Shock Waves
,
12
(
3
), pp.
367
370
.10.1007/BF00789020
15.
Loginov
,
N. P.
,
1997
, “
Structural and Physicochemical Changes in RDX Under Vibration
,”
Combust., Explos. Shock Waves
,
33
(
5
), pp.
598
604
.10.1007/BF02672746
16.
Senchenkov
,
I. K.
, and
Karnaukhov
,
V. G.
,
2001
, “
Thermomechanical Behavior of Nonlinearly Viscoelastic Materials Under Harmonic Loading
,”
Int. Appl. Mech.
,
37
(
11
), pp.
1400
1432
.10.1023/A:1014224414351
17.
Dinzart
,
F.
,
Molinari
,
A.
, and
Herbach
,
R.
,
2008
, “
Thermomechanical Response of a Viscoelastic Beam Under Cyclic Bending; Self-Heating and Thermal Failure
,”
Arch. Mech.
,
60
(
1
), pp.
59
85
.
18.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
,
Wiley
, Hoboken, NJ.
19.
Jones
,
D. G.
,
2001
,
Handbook of Viscoelastic Vibration Damping
,
Wiley
,
Chichester, UK
.
20.
Brinson
,
H. F.
, and
Brinson
,
L. C.
,
2008
,
Polymer Engineering Science and Viscoelasticity: An Introduction
,
Springer
,
New York
.
21.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1951
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
22.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Introduction to Heat Transfer
,
Wiley
,
Hoboken, NJ
.
23.
Paripovic
,
J.
,
2013
, personal communication.
24.
Paz
,
M.
,
1997
,
Structural Dynamics: Theory and Computation
,
Springer
,
New York
.
25.
Gustafsson
,
S. E.
,
1991
, “
Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials
,”
Rev. Sci. Instrum.
,
62
(
3
), pp.
797
804
.10.1063/1.1142087
26.
Rich
,
B. R.
,
1953
, “
An Investigation of Heat Transfer From an Inclined Flat Plate in Free Convection
,”
Trans. ASME
,
75
, pp.
489
499
.
27.
Vliet
,
G. C.
,
1969
, “
Natural Convection Local Heat Transfer on Constant-Heat-Flux Inclined Surfaces
,”
ASME J. Heat Transfer
,
91
(
4
), pp.
511
516
.10.1115/1.3580235
28.
Goldstein
,
R. J.
,
Sparrow
,
E. M.
, and
Jones
,
D. C.
,
1973
, “
Natural Convection Mass Transfer Adjacent to Horizontal Plates
,”
Int. J. Heat Mass Transfer
,
16
(
5
), pp.
1025
1035
.10.1016/0017-9310(73)90041-0
29.
Tarver
,
C. M.
,
Chidester
,
S. K.
, and
Nichols
,
A. L.
,
1996
, “
Critical Conditions for Impact- and Shock-Induced Hot Spots in Solid Explosives
,”
J. Phys. Chem.
,
100
(
14
), pp.
5794
5799
.10.1021/jp953123s
30.
Mattos
,
E. C.
,
Moreira
,
E. D.
,
Dutra
,
R. C. L.
,
Diniz
,
M. F.
,
Ribeiro
,
A. P.
, and
Iha
,
K.
,
2004
, “
Determination of the HMX and RDX Content in Synthesized Energetic Material by HPLC, FT-MIR, and FT-NIR Spectroscopies
,”
Quím. Nova
,
27
(
4
), pp.
540
544
.10.1590/S0100-40422004000400005
31.
Mares
,
J. O.
,
Miller
,
J. K.
,
Sharp
,
N. D.
,
Moore
,
D. S.
,
Adams
,
D. E.
,
Groven
,
L. J.
,
Rhoads
,
J. F.
, and
Son
,
S. F.
,
2013
, “
Thermal and Mechanical Response of PBX 9501 Under Contact Excitation
,”
J. Appl. Phys.
,
113
(
8
), p.
084904
.10.1063/1.4793495
32.
Woods
,
D. C.
,
Miller
,
J. K.
, and
Rhoads
,
J. F.
,
2014
, “
On the Thermomechanical Response of HTPB Composite Beams Under Near-Resonant Base Excitation
,”
ASME
Paper No. 2014-34516.10.1115/DETC2014-34516
You do not currently have access to this content.