In the field of nondestructive testing (NDT), a suitable defect identification parameter plays an important role in evaluating the reliability of structures or materials. In this work, we proposed a NDT method which detects the sample's local contact stiffness (LCS) based on the contact resonance of a piezoelectric cantilever. First, through finite element analysis (FEA) we showed that LCS is quite sensitive to typical defects including debonding, voids, cracks, and inclusions, indicating that LCS could be a good identification parameter. Then, a homemade NDT system containing a piezoelectric cantilever was assembled to detect the sample's LCS by tracking the contact resonance frequency (CRF) of the cantilever-sample system. Testing results indicated that the proposed NDT method could detect the above mentioned defects efficiently and precisely. The cantilever-stiffness dependent detection sensitivity was specially investigated and the stiffer cantilevers were found to be more sensitive to small defects, while the softer cantilevers were more suitable for large defects detecting with smaller pressing force. Finally, the detection limit of this NDT method is investigated both experimentally and computationally. The proposed LCS-based NDT method could be very promising for defect detecting in noncontinuous structures and composite materials.

References

References
1.
Pernkopf
,
F.
, and
O'leary
,
P.
,
2003
, “
Image Acquisition Techniques for Automatic Visual Inspection of Metallic Surfaces
,”
NDT&E Int.
,
36
(
8
), pp.
609
617
.10.1016/S0963-8695(03)00081-1
2.
Chimenti
,
D.
,
1997
, “
Guided Waves in Plates and Their Use in Materials Characterization
,”
ASME Appl. Mech. Rev.
,
50
(5), pp.
247
284
.10.1115/1.3101707
3.
Dobmann
,
G.
,
Kröning
,
M.
,
Theiner
,
W.
,
Willems
,
H.
, and
Fiedler
,
U.
,
1995
, “
Nondestructive Characterization of Materials (Ultrasonic and Micromagnetic Techniques) for Strength and Toughness Prediction and the Detection of Early Creep Damage
,”
Nucl. Eng. Des.
,
157
(
1
), pp.
137
158
.10.1016/0029-5493(95)00992-L
4.
Zhu
,
Y.-K.
,
Tian
,
G.-Y.
,
Lu
,
R.-S.
, and
Zhang
,
H.
,
2011
, “
A Review of Optical NDT Technologies
,”
Sensors
,
11
(
8
), pp.
7773
7798
.10.3390/s110807773
5.
Cheng
,
C.-C.
,
Cheng
,
T.-M.
, and
Chiang
,
C.-H.
,
2008
, “
Defect Detection of Concrete Structures Using Both Infrared Thermography and Elastic Waves
,”
Autom. Constr.
,
18
(
1
), pp.
87
92
.10.1016/j.autcon.2008.05.004
6.
Nagarkar
,
V. V.
,
Miller
,
S. R.
,
Tipnis
,
S. V.
,
Gaysinskiy
,
V.
,
Lempicki
,
A.
, and
Brecher
,
C.
,
2002
, “
High-Resolution High-Speed CT/Radiography System for NDT of Adhesive Bonded Composites
,”
Proc. SPIE
,
4503
, pp.
265
273
.10.1117/12.452852
7.
Blitz
,
J.
, and
Simpson
,
G.
,
1996
,
Ultrasonic Methods of Non-Destructive Testing
,
Chapman and Hall
,
London
.
8.
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2006
, “
Ultrasonic Arrays for Non-Destructive Evaluation: A Review
,”
NDT&E Int.
,
39
(
7
), pp.
525
541
.10.1016/j.ndteint.2006.03.006
9.
Beard
,
M.
, and
Lowe
,
M.
,
2003
, “
Non-Destructive Testing of Rock Bolts Using Guided Ultrasonic Waves
,”
Int. J. Rock Mech. Min. Sci.
,
40
(
4
), pp.
527
536
.10.1016/S1365-1609(03)00027-3
10.
Lange
,
Y.
, and
Moskovenko
,
I.
,
1978
, “
Low Frequency Acoustic Ndt Methods
,”
Sov. J. NDT
,
14
, pp.
788
797
.
11.
Cawley
,
P.
, and
Nguyen
,
D.
,
1988
, “
The Use of the Impedance Method of Non-Destructive Testing on Honeycomb Structures
,”
Mech. Syst. Signal Process.
,
2
(
4
), pp.
309
325
.10.1016/0888-3270(88)90057-X
12.
Cawley
,
P.
, and
Adams
,
R.
,
1988
, “
The Mechanics of the Coin-Tap Method of Non-Destructive Testing
,”
J. Sound Vib.
,
122
(
2
), pp.
299
316
.10.1016/S0022-460X(88)80356-0
13.
Cawley
,
P.
, and
Adams
,
R.
,
1989
, “
Sensitivity of the Coin-Tap Method of Nondestructive Testing
,”
Mater. Eval.
,
47
(
5
), pp.
558
563
.
14.
Cawley
,
P.
,
1984
, “
The Impedance Method of Non-Destructive Inspection
,”
NDT Int.
,
17
(
2
), pp.
59
65
.10.1016/0308-9126(84)90045-2
15.
Cawley
,
P.
,
1987
, “
The Sensitivity of the Mechanical Impedance Method of Nondestructive Testing
,”
NDT Int.
,
20
(
4
), pp.
209
215
.10.1016/0308-9126(87)90243-4
16.
Hsu
,
D. K.
,
Barnard
,
D. J.
,
Peters
,
J. J.
, and
Dayal
,
V.
,
2000
,
Review of Progress in Quantitative Nondestructive Evaluation
,
AIP
,
New York
.
17.
Peters
,
J.
,
Barnard
,
D.
,
Hudelson
,
N.
,
Simpson
,
T.
, and
Hsu
,
D.
,
2000
,
Review of Progress in Quantitative Nondestructive Evaluation
,
AIP
,
New York
.
18.
Li
,
X.
, and
Bhushan
,
B.
,
2002
, “
A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications
,”
Mater. Charact.
,
48
(
1
), pp.
11
36
.10.1016/S1044-5803(02)00192-4
19.
Rabe
,
U.
, and
Arnold
,
W.
,
1994
, “
Acoustic Microscopy by Atomic Force Microscopy
,”
Appl. Phys. Lett.
,
64
(
12
), pp.
1493
1495
.10.1063/1.111869
20.
Zhou
,
X.
,
Fu
,
J.
,
Li
,
Y.
, and
Li
,
F.
,
2014
, “
Nanomechanical Mapping of Glass Fiber Reinforced Polymer Composites Using Atomic Force Acoustic Microscopy
,”
J. Appl. Polym. Sci.
,
131
(
2
), p.
39800
.10.1002/app.39800
21.
Hayes
,
S.
,
Goruppa
,
A.
, and
Jones
,
F.
,
2004
, “
Dynamic Nanoindentation as a Tool for the Examination of Polymeric Materials
,”
J. Mater. Res.
,
19
(
11
), pp.
3298
3306
.10.1557/JMR.2004.0437
22.
Killgore
,
J. P.
,
Yablon
,
D. G.
,
Tsou
,
A. H.
,
Gannepalli
,
A.
,
Yuya
,
P. A.
,
Turner
,
J. A.
,
Proksch
,
R.
, and
Hurley
,
D. C.
,
2011
, “
Viscoelastic Property Mapping With Contact Resonance Force Microscopy
,”
Langmuir
,
27
(
23
), pp.
13983
13987
.10.1021/la203434w
23.
Zhou
,
X.
,
Fu
,
J.
, and
Li
,
F.
,
2013
, “
Contact Resonance Force Microscopy for Nanomechanical Characterization: Accuracy and Sensitivity
,”
J. Appl. Phys.
,
114
(
6
), p.
064301
.10.1063/1.4817659
24.
Rabe
,
U.
,
2006
,
Applied Scanning Probe Methods II
,
Springer
,
Berlin
.
25.
Rabe
,
U.
,
Janser
,
K.
, and
Arnold
,
W.
,
1996
, “
Vibrations of Free and Surface-Coupled Atomic Force Microscope Cantilevers: Theory and Experiment
,”
Rev. Sci. Instrum.
,
67
(
9
), pp.
3281
3293
.10.1063/1.1147409
26.
Yuya
,
P. A.
,
Hurley
,
D. C.
, and
Turner
,
J. A.
,
2011
, “
Relationship Between Q-Factor and Sample Damping for Contact Resonance Atomic Force Microscope Measurement of Viscoelastic Properties
,”
J. Appl. Phys.
,
109
(
11
), p.
113528
.10.1063/1.3592966
27.
Banerjee
,
S.
,
Gayathri
,
N.
,
Shannigrahi
,
S.
,
Dash
,
S.
,
Tyagi
,
A.
, and
Raj
,
B.
,
2007
, “
Imaging Distribution of Local Stiffness Over Surfaces Using Atomic Force Acoustic Microscopy
,”
J. Phys. D-Appl. Phys.
,
40
(
8
), p.
2539
.10.1088/0022-3727/40/8/019
28.
Turner
,
J. A.
, and
Wiehn
,
J. S.
,
2001
, “
Sensitivity of Flexural and Torsional Vibration Modes of Atomic Force Microscope Cantilevers to Surface Stiffness Variations
,”
Nanotechnology
,
12
(
3
), pp.
322
330
.10.1088/0957-4484/12/3/321
You do not currently have access to this content.