Liner cavitation induced by piston slap in a diesel engine is caused by water pressure fluctuation when the pressure of coolant falls below saturated vapor pressure. Cavitation erosion of cylinder liners is thought to be generated by the impulsive pressure or jet flow impingement following the collapse of cavitation bubbles. In this study, a numerical method to predict the water pressure fluctuation in water coolant passage induced by piston slap impact force is developed. In complimentary impact vibration experiments, high frequency components of the water pressure fluctuation can be seen just after the pressure reaches the saturated vapor pressure level or less. These high frequency components seem to show the occurrence of cavitation. A finite element acoustic model of the water coolant passage in an actual engine block is created and its validity is confirmed by the acoustic vibration tests in air. Then, the coupled vibration characteristics of the water acoustic field and engine block structure are determined, and water pressure waveform induced by piston slap is predicted.

References

References
1.
Dular
,
M.
,
Bachert
,
B.
,
Stoffel
,
B.
, and
Sirok
,
B.
,
2004
, “
Relationship Between Cavitation Structures and Cavitation Damage
,”
Wear
,
257
(
11
), pp.
1176
1184
.10.1016/j.wear.2004.08.004
2.
Lauterborn
,
W.
, and
Bolle
,
H.
,
1975
, “
Experimental Investigations of Cavitation-Bubble Collapse in the Neighbourhood of a Solid Boundary
,”
J. Fluid Mech.
,
72
(
02
), pp.
391
399
.10.1017/S0022112075003448
3.
Dular
,
M.
, and
Osterman
,
A.
,
2008
, “
Pit Clustering in Cavitation Erosion
,”
Wear
,
265
(
56
), pp.
811
820
.10.1016/j.wear.2008.01.005
4.
Chen
,
H.
,
Li
,
J.
,
Chen
,
D.
, and
Wang
,
J.
,
2008
, “
Damages on Steel Surface at the Incubation Stage of the Vibration Cavitation Erosion in Water
,”
Wear
,
265
(
56
), pp.
692
698
.10.1016/j.wear.2007.12.011
5.
Ross
,
T.
, and
Aspin
,
A.
,
1973
, “
The Water-Side Corrosion of Diesel Engines
,”
Corros. Sci.
,
13
(
1
), pp.
53
61
.10.1016/0010-938X(73)90048-6
6.
Tomlinson
,
W.
, and
Talks
,
M.
,
1991
, “
Erosion and Corrosion of Cast Iron Under Cavitation Conditions
,”
Tribol. Int.
,
24
(
2
), pp.
67
75
.10.1016/0301-679X(91)90035-8
7.
Rejowski
,
E.
,
Soares
,
E.
,
Roth
,
I.
, and
Rudolph
,
S.
,
2012
, “
Cylinder Liner in Ductile Cast Iron for High Loaded Combustion Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
072807
.10.1115/1.4006071
8.
Moore
,
W.
,
2005
, “
The Basics of Diesel Engine Coolant
,”
Constr. Equip.
,
108
(
9
), pp.
46
49
.http://www.constructionequipment.com/basics-diesel-engine-coolant
9.
Ron
,
H.
,
1999
, “
Cavitation Erosion of Cylinder Liners and How to Eliminate It
,”
Pipeline Gas J.
,
226
(
3
), pp.
36
39
.
10.
Yonezawa
,
T.
,
Senda
,
J.
,
Okubo
,
M.
,
Fujimoto
,
H.
, and
Miki
,
H.
,
1985
, “
Experimental Analysis on the Behavior of Cavitation Bubbles at Cylinder Liner Erosion in Diesel Engines
,”
J. Mar. Eng. Soc. Jpn
.,
20
(
6
), pp.
361
369
(in Japanese).10.5988/jime1966.20.361
11.
Yonezawa
,
T.
, and
Kanda
,
H.
,
1984
, “
Study of Cavitation Erosion on Cylinder Liner and Cylinder Block
,”
J. Mar. Eng. Soc. Jpn.
,
19
(
5
), pp.
16
22
(in Japanese).10.5988/jime1966.19.384
12.
Lowe
,
A.
,
1990
, “
An Analytical Technique for Assessing Cylinder Liner Cavitation Erosion
,”
SAE
Technical Paper No. 900134.10.4271/900134
13.
Green
,
G.
, and
Engelstad
,
R.
,
1993
, “
A Technique for the Analysis of Cylinder Liner Vibrations and Cavitation
,”
SAE
Technical Paper No. 930582.10.4271/930582
14.
Ohta
,
K.
,
Amano
,
K.
,
Hayashida
,
A.
,
Zheng
,
G.
, and
Honda
,
I.
,
2011
, “
Analysis of Piston Slap Induced Noise and Vibration Internal Combustion Engine
,”
J. Environ. Eng.
,
6
(
3
), pp.
712
722
.10.1299/jee.6.712
15.
Craggs
,
A.
,
1971
, “
The Transient Response of a Coupled Plate-Acoustic System Using Plate and Acoustic Finite Elements
,”
J. Sound Vib.
,
15
(
4
), pp.
509
528
.10.1016/0022-460X(71)90408-1
16.
Zienkiewicz
,
O.
, and
Bettess
,
P.
,
1978
, “
Fluid-Structure Dynamic Interaction and Wave Forces. An Introduction to Numerical Treatment
,”
Int. J. Numer. Method Eng.
,
13
(
1
), pp.
1
16
.10.1002/nme.1620130102
17.
Nefske
,
D.
,
Wolf
,
J.
, and
Howell
,
L.
,
1982
, “
Structural-Acoustic Finite Element Analysis of the Automobile Passenger Compartment: A Review of Current Practice
,”
J. Sound Vib.
,
80
(
2
), pp.
247
266
.10.1016/0022-460X(82)90194-8
18.
Everstine
,
G.
,
Schroeder
,
E.
, and
Marcus
,
M.
,
1975
, “
The Dynamic Analysis of Submerged Structures
,” NASTRAN: Users' Experiences Conference, Hampton, VA, Sept. 9–11, NASA Langley Research Center, Langley, VA, Report No. NASA TM X-3278, pp.
419
429
.
19.
He
,
J.
, and
Zhi
,
Z.
,
2001
,
Modal Analysis
,
Butterworth-Heinemann
,
Oxford, UK
.
20.
Petyt
,
M.
,
1990
,
Introduction to Finite Element Vibration Analysis
,
Cambridge University Press
,
Cambridge, UK
.
21.
Genta
,
G.
,
2009
,
Vibration Dynamics and Control
,
Springer
,
New York
.
22.
Hagiwara
,
I.
, and
Ma
,
Z.
,
1991
, “
Improved Mode-Superposition Technique for Modal Frequency Response Analysis of Coupled Acoustic-Structural Systems
,”
AIAA J.
,
29
(
10
), pp.
93
106
.10.2514/3.10795
23.
Shamsborhan
,
H.
,
Coutier-Delgosha
,
O.
,
Caignaert
,
G.
, and
Nour
,
F. A.
,
2010
, “
Experimental Determination of the Speed of Sound in Cavitating Flows
,”
Exp. Fluids
,
49
(
6
), pp.
1359
1373
.10.1007/s00348-010-0880-6
24.
Wagner
,
W.
, and
Pruss
,
A.
,
1993
, “
Reference Data
,”
J. Phys. Chem.
,
22
(
2
), pp.
783
787
.10.1063/1.555926
25.
Shiraki
,
K.
,
1987
,
Noise Control Design and Simulation
,
Ouyou Gijyutu Shuppan
,
Tokyo
.
You do not currently have access to this content.