A hypothesis is presented in this paper for evaluating the root mean square (RMS) errors in acceleration for determining the optimal locations of the exciters during the vibration testing of slender flexible structures, e.g., missiles, rockets, and space vehicles. Simulation studies are carried out on a realistic slender nonuniform beam in a free–free conditions to characterize the error estimations in the desired and achieved acceleration spectra at different locations of the structure. The optimal locations of the exciters are obtained using a real-coded genetic algorithm (RCGA) with minimal required force levels and the corresponding RMS error estimates. It has been observed that RMS force levels are a minimum when the exciter and control sensor locations are noncollocated. This study also provides a methodology in deriving the optimum force levels required for the environmental vibration testing of the full vehicle structure. The RMS error levels are found to be a minimum at the control sensor locations.

References

1.
Himelblau
,
H.
, and
Hine
,
M. J.
,
1995
, “
Effects of Triaxial and Uniaxial Random Excitation on the Vibration Response and Fatigue of Typical Spacecraft Hardware
,”
66th Shock and Vibration Symposium
, Biloxi, MS, Oct. 30–Nov. 3, pp. 15–32.
2.
Chung
,
Y. T.
,
Krebs
,
D. J.
, and
Peebles
,
J. H.
,
2001
, “
Estimation of Payload Random Vibration Loads for Proper Structure Design
,”
42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference
, Seattle, WA, Apr. 16–19,
AIAA
Paper No. 2001-1667.10.2514/6.2001-1667
3.
Rodrigues
,
G.
, and
Santiago-Prowald
,
J.
,
2004
, “
Random Vibration Environment Derived From Acoustic Load Specification
,”
10th AIAA/CEAS Aeroacoustics Conference
, Manchester, UK, May 10–12,
AIAA
Paper No. 2004-2834.10.2514/6.2004-2834
4.
Joshi
,
A.
,
Ramkrishna
,
D.
,
Mujumdar
,
P. M.
, and
Krishna
,
Y.
,
2008
, “
Evolution of Vibration Testing Strategy Using Multi-Point Excitation
,”
AIAA
Paper No. 2008-1853. 10.2514/6.2008-1853
5.
Joshi
,
A.
,
Ramkrishna
,
D.
,
Mujumdar
,
P. M.
, and
Krishna
,
Y.
,
2009
, “
Identification of Input Force Spectrum in Vibration Testing of Flight Vehicle Structures
,”
AIAA
Paper No. 2009-2527. 10.2514/6.2009-2527
6.
Joshi
,
A.
,
Ramkrishna
,
D.
,
Mujumdar
,
P. M.
, and
Krishna
,
Y.
,
2010
, “
Identification of Multiple Input Forces Spectrum in Vibration Testing of Flight Vehicle Structures
,”
AIAA
Paper No. 2010-2805. 10.2514/6.2010-2805
7.
Johansson
,
A. T.
,
Abrahamsson
,
T. J. S.
, and
Keulen
,
F. V.
,
2007
, “
Comparison of Several Error Metrics for FE Model Updating
,”
Proceedings of the 25th International Modal Analysis Conference
(
IMAC-XXV
),
Orlando, FL
, Feb. 19–22, pp. 130–232.
8.
Kammer
,
D. C.
, and
Nimityongskul
,
S.
,
2009
, “
Finite Element Model Updating Using Frequency Band Averaging of Spectral Densities
,”
27th International Modal Analysis Conference
(
IMAC-XXVII
),
Orlando, FL
, Feb. 9–12, pp.
1651
1669
.
9.
Michalewicz
,
Z.
,
1994
,
Genetic Algorithms + Data Structures = Evolution Programs
, 2nd ed.,
Springer-Verlag
,
New York
, pp.
97
106
.
10.
Haupt
,
R. L.
, and
Haupt
,
S. E.
,
2004
,
Practical Genetic Algorithms
, 2nd ed.,
Wiley
,
New York
, pp.
51
66
.
11.
Yoshimoto
,
F.
,
Harada
,
T.
, and
Yoshimoto
,
Y.
,
2003
, “
Data Fitting With a Spline Using a Real-Coded Genetic Algorithm
,”
Comput. Aided Des.
,
35
(
8
), pp.
751
760
.10.1016/S0010-4485(03)00006-X
12.
Haupt
,
R. L.
,
2007
, “
Antenna Design With a Mixed Integer Genetic Algorithm
,”
IEEE Trans. Antennas Propag.
,
55
(
3
), pp.
577
582
.10.1109/TAP.2007.891510
13.
Srikanth
,
T.
, and
Kamala
,
V.
,
2008
, “
A Real Coded Genetic Algorithm for Optimization of Cutting Parameters in Turning
,”
Int. J. Comput. Sci. Network Secur.
,
8
(
6
), pp.
189
193
.http://paper.ijcsns.org/07_book/200806/20080625.pdf
14.
Wang
,
Z.-L.
,
Yang
,
P.
,
Ling
,
D.
, and
Miao
,
Q.
,
2008
, “
An Improved Real-Coded Genetic Algorithm and Its Application
,”
J. Electron. Sci. Technol. China
,
6
(
1
), pp.
43
46
.
15.
Lembregts
,
F.
,
Leuridan
,
J.
, and
Van-Brussel
,
H.
,
1990
, “
Frequency Domain Direct Parameter Identification for Modal Analysis: State Space Formulation
,”
Mech. Syst. Signal Process.
,
4
(
1
), pp.
65
75
.10.1016/0888-3270(90)90041-I
16.
Liu
,
K.
,
1996
, “
Modal Parameter Estimation Using the State Space Method
,”
J. Sound Vib.
,
197
(
4
), pp.
387
402
.10.1006/jsvi.1996.0539
17.
U.S. DOD
,
2008
, “
Test Method Standard for Environmental Engineering Considerations and Laboratory Tests
,” U.S. Department of Defense, Defense Technical Information Center, Fort Belvoir, VA, Military Specification MIL-STD-810G, available at: http://www.atec.army.mil/publications/Mil-Std-810G/Mil-Std-810G.pdf
18.
Razali
,
N. M.
, and
John
,
G.
,
2011
, “
Genetic Algorithm Performance With Different Selection Strategies in Solving TSP
,”
World Congress on Engineering
(
WCE 2011
),
London
, July 6–8, pp.
1134
1139
.http://www.iaeng.org/publication/WCE2011/WCE2011_pp1134-1139.pdf
19.
Herrera
,
F.
, and
Lozano
,
M.
,
1998
, “
Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis
,”
Artif. Intell. Rev.
,
12
(
4
), pp.
265
319
.10.1023/A:1006504901164
20.
Malhotra
,
R.
,
Singh
,
N.
, and
Singh
,
Y.
,
2011
, “
Genetic Algorithms: Concepts, Design for Optimization of Process Controllers
,”
Comput. Inf. Sci.
,
4
(
2
), pp.
39
54
.10.5539/cis.v4n2p39
21.
Arumugam
,
M. S.
, and
Rao
,
M. V. C.
,
2005
, “
Novel Hybrid Approaches for Real Coded Genetic Algorithm to Compute the Optimal Control of a Single Stage Hybrid Manufacturing Systems
,”
Int. J. Computat. Intelligence
,
1
(
3
), pp.
189
206
.http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=0FBCC680734884C6AE2620A51CC57F18?doi=10.1.1.130.2980&rep=rep1&type=pdf
22.
Ueda
,
Y.
,
Horio
,
K.
, and
Kubota
,
R.
,
2014
, “
A Modified Real-Coded Genetic Algorithm Considering With Fitness-Based Variability
,”
Int. J. Innovation Comput. Inf. Control
,
10
(
4
), pp.
1509
1518
.www.ijicic.org/ijicic-13-07019.pdf
You do not currently have access to this content.