Friction control at the wheel–rail interface, using on-board solid stick friction modifier systems can lead to enhanced track life, reduced wear, and increased fuel economy in railroads. Frictional contact between the solid stick and the railway wheel itself can potentially cause vibrations within the modifier systems, influencing their stability and performance. A frequency domain linearized stability analysis of the state of steady sliding at the frictional contact between the solid stick and the wheel is performed. The proposed approach relies on individual frequency response functions (FRFs) of the wheel and the applicator–bracket subsystems of the on-board friction modifier. Stability characteristics of three representative bracket designs are qualitatively compared, using the FRFs generated by their respective finite element (FE) models. The FE models are validated by comparing the predicted natural frequencies with corresponding experimentally measured values on a full wheel test rig (FWTR) facility. The validated FE models are then used to compute stability maps which delineate stable and unstable regions of operation in the design parameter space, defined by train speed, angle of applicator, friction coefficient, and bracket design. Strong dependence of stability upon the bracket designs is observed. The methodology developed here can be used by design engineers to assess the effectiveness of design changes on the stability of the applicator–bracket assembly in a virtual environment—thus avoiding costly retrofitting and prototyping. Directions for further model refinement and testing are provided.

References

References
1.
Yokoi
,
M.
, and
Nakai
,
M.
,
1979
, “
A Fundamental Study on Frictional Noise: 1st Report, the Generating Mechanism of Rubbing Noise and Squeal Noise
,”
Bull. JSME
,
22
(
173
), pp.
1665
1671
.10.1299/jsme1958.22.1665
2.
Thompson
,
D.
,
1993
, “
Wheel-Rail Noise Generation, Part I: Introduction and Interaction Model
,”
J. Sound Vib.
,
161
(
3
), pp.
387
400
.10.1006/jsvi.1993.1082
3.
Remington
,
P.
,
1976
, “
Wheel/Rail Noise—Part I: Characterization of the Wheel/Rail Dynamic System
,”
J. Sound Vib.
,
46
(
3
), pp.
359
379
.10.1016/0022-460X(76)90861-0
4.
Heckl
,
M.
, and
Abrahams
,
I.
,
2000
, “
Curve Squeal of Train Wheels—Part I: Mathematical Model for Its Generation
,”
J. Sound Vib.
,
229
(
3
), pp.
669
693
.10.1006/jsvi.1999.2510
5.
Anderson
,
R.
,
Elkins
,
J. A.
,
Brickle
,
B. V.
,
Aref
,
H.
, and
Phillips
,
J. W.
,
2002
,
Rail Vehicle Dynamics for the 21st Century
,
Springer
,
Dordrecht
, pp.
113
126
.
6.
Ibrahim
,
R.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part I: Mechanics of Contact and Friction
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
209
226
.10.1115/1.3111079
7.
Ibrahim
,
R.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part II: Dynamics and Modeling
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
227
253
.10.1115/1.3111080
8.
Berger
,
E.
,
2002
, “
Friction Modeling for Dynamic System Simulation
,”
ASME Appl. Mech. Rev.
,
55
(
6
), pp.
535
577
.10.1115/1.1501080
9.
Bowden
,
F.
, and
Tabor
,
D.
,
2001
,
The Friction and Lubrication of Solids
,
Oxford University Press
,
Oxford
.
10.
Rabinowicz
,
E.
,
1965
,
Friction and Wear of Materials
,
Wiley
,
New York
.
11.
Johnson
,
K.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
12.
Feeny
,
B.
,
Ardéshir
,
G.
,
Hinrichs
,
N.
, and
Popp
,
K.
,
1998
, “
A Historical Review on Dry Friction and Stick-Slip Phenomena
,”
ASME Appl. Mech. Rev.
,
51
(
5
), pp.
321
341
.10.1115/1.3099008
13.
Akay
,
A.
,
2002
, “
Acoustics of Friction
,”
J. Acoust. Soc. Am.
,
111
(
4
), pp.
1525
1548
.10.1121/1.1456514
14.
Armstrong-Helouvry
,
B.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.10.1016/0005-1098(94)90209-7
15.
Duffour
,
P.
, and
Woodhouse
,
J.
,
2004
, “
Instability of Systems With a Frictional Point Contact—Part I: Basic Modelling
,”
J. Sound Vib.
,
271
(
1–2
), pp.
365
390
.10.1016/j.jsv.2003.02.002
16.
Duffour
,
P.
, and
Woodhouse
,
J.
,
2007
, “
Instability of Systems With a Frictional Point Contact—Part III: Experimental Tests
,”
J. Sound Vib.
,
304
(
1–2
), pp.
186
200
.10.1016/j.jsv.2007.02.019
17.
Butlin
,
T.
, and
Woodhouse
,
J.
,
2010
, “
Friction Induced Vibration: Quantifying Sensitivity and Uncertainty
,”
J. Sound Vib.
,
329
(
5
), pp.
509
526
.10.1016/j.jsv.2009.09.026
18.
Kruse
,
S.
, and
Hoffmann
,
N. P.
,
2013
, “
On the Robustness of Instabilities in Friction-Induced Vibration
,”
ASME J. Vib. Acoust.
,
135
(
6
), p.
061013
.10.1115/1.4024939
19.
Seo
,
Y.
,
Yabuno
,
H.
, and
Kono
,
G.
,
2013
, “
Mode Coupling-Type Instability of a Beam Subjected to Coulomb Friction
,”
ASME J. Vib. Acoust.
,
135
(
6
), p.
064502
.10.1115/1.4024219
20.
Jarvis
,
R.
, and
Mills
,
B.
,
1963
, “
Vibrations Induced by Dry Friction
,”
Proc. Inst. Mech. Eng.
,
178
(
1963
), pp.
847
866
.10.1243/PIME_PROC_1963_178_058_02
21.
Earles
,
S.
, and
Lee
,
C.
,
1976
, “
Instabilities Arising From the Frictional Interaction of a Pin-Disc System Resulting in Noise Generation
,”
ASME J. Eng. Ind.
,
98
(
1
), pp.
81
86
.10.1115/1.3438879
22.
Kinkaid
,
N.
,
O'Reilly
,
O. M.
, and
Papadopoulos
,
P.
,
2003
, “
Automotive Disc Brake Squeal
,”
J. Sound Vib.
,
267
(
1
), pp.
105
166
.10.1016/S0022-460X(02)01573-0
23.
Wagner
,
U. V.
,
Hochlenert
,
D.
, and
Hagedorn
,
P.
,
2007
, “
Minimal Models for Disc Brake Squeal
,”
J. Sound Vib.
,
302
(3), pp.
527
539
.10.1016/j.jsv.2006.11.023
24.
Ouyang
,
H.
,
Nack
,
W.
,
Yuan
,
Y.
, and
Chen
,
F.
,
2005
, “
Numerical Analysis of Automotive Disc Brake Squeal: A Review
,”
Int. J. Veh. Noise Vib.
,
1
(
3
), pp.
207
231
.10.1504/IJVNV.2005.007524
25.
Duffour
,
P.
, and
Woodhouse
,
J.
,
2004
, “
Instability of Systems With a Frictional Point Contact—Part II: Model Extensions
,”
J. Sound Vib.
,
271
(
1–2
), pp.
391
410
.10.1016/j.jsv.2003.02.004
26.
Ewins
,
D.
,
1995
,
Modal Testing: Theory and Practice
,
Research Studies Press
,
New York
.
27.
Remington
,
P.
,
1976
, “
Wheel/Rail Noise—Part IV: Rolling Noise
,”
J. Sound Vib.
,
46
(
3
), pp.
419
436
.10.1016/0022-460X(76)90864-6
28.
Remington
,
P.
,
1987
, “
Wheel/Rail Rolling Noise—I: Theoretical Analysis
,”
J. Acoust. Soc. Am.
,
81
(
6
), pp.
1805
1823
.10.1121/1.394746
29.
Thompson
,
D.
,
1993
, “
Wheel-Rail Noise Generation—Part II: Wheel Vibration
,”
J. Sound Vib.
,
161
(
3
), pp.
401
419
.10.1006/jsvi.1993.1083
30.
Thompson
,
D.
,
1993
, “
Wheel-Rail Noise Generation—Part III: Rail Vibration
,”
J. Sound Vib.
,
161
(
3
), pp.
421
446
.10.1006/jsvi.1993.1084
31.
Thompson
,
D.
,
1993
, “
Wheel-Rail Noise Generation—Part IV: Contact Zone and Results
,”
J. Sound Vib.
,
161
(
3
), pp.
447
466
.10.1006/jsvi.1993.1085
32.
Thompson
,
D.
,
1993
, “
Wheel-Rail Noise Generation—Part V: Inclusion of Wheel Rotation
,”
J. Sound Vib.
,
161
(
3
), pp.
467
482
.10.1006/jsvi.1993.1086
33.
Phani
,
A. S.
,
2003
, “
On the Necessary and Sufficient Conditions for the Existence of Classical Normal Modes in Damped Linear Dynamic Systems
,”
J. Sound Vib.
,
264
(
3
), pp.
741
745
.10.1016/S0022-460X(02)01506-7
34.
Phani
,
A. S.
, and
Woodhouse
,
J.
,
2009
, “
Experimental Identification of Viscous Damping in Linear Vibration
,”
J. Sound Vib.
,
319
(
3–5
), pp.
832
849
.10.1016/j.jsv.2008.06.022
35.
Wang
,
S.
, and
Woodhouse
,
J.
,
2011
, “
The Frequency Response of Dynamic Friction: A New View of Sliding Interfaces
,”
J. Mech. Phys. Solids
,
59
(
5
), pp.
1020
1036
.10.1016/j.jmps.2011.02.005
36.
Dorf
,
R. C.
, and
Bishop
,
R. H.
,
2010
,
Modern Control Systems
,
12th ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
37.
Adhikari
,
S.
, and
Phani
,
A. S.
,
2009
, “
Experimental Identification of Generalized Proportional Viscous Damping Matrix
,”
ASME J. Vib. Acoust.
,
131
(
1
), p.
011008
.10.1115/1.2980400
38.
Tobias
,
S.
, and
Arnold
,
R. N.
,
1957
, “
The Influence of Dynamical Imperfection on the Vibration of Rotating Disks
,”
Proc. Inst. Mech. Eng.
,
171
(1), pp.
669
690
.10.1243/PIME_PROC_1957_171_056_02
39.
Goldstein
,
H.
,
2001
,
Classical Mechanics
,
2nd ed.
,
Narosa Publishing House
,
New Delhi, India
.
You do not currently have access to this content.