Stability analysis and improvement of disk brake systems for squeal reduction have been investigated by automotive manufacturers for decades. However, most of the researches have not considered uncertainties. For this case, a practical approach for analyzing and improving the stability of uncertain disk brake systems is proposed in this paper. In the proposed approach, a hybrid uncertain model with random and interval parameters is introduced to deal with the uncertainties existing in a disk brake system. The parameters of brake pressure, densities of component materials, and thickness of back plate are treated as random variables; whereas the parameters of frictional coefficient and Young's modulus of component materials are treated as interval variables. Attention is focused on stability analysis of the disk brake system for squeal reduction, and the stability is investigated via complex eigenvalue analysis (CEA). The dominant unstable mode is extracted by performing CEA based on a linear finite element (FE) model, and the negative damping ratio corresponding to the dominant unstable mode is selected as the indicator of system stability. To improve the efficiency of analysis, response surface methodology (RSM) is used to replace the time-consuming FE simulations. Based on RSM and CEA, the stability analysis model of the disk brake system is constructed, in which reliability analysis, hybrid uncertain analysis and sensitivity analysis are applied to deal with the uncertain problems. The analysis results of a numerical example demonstrate the effectiveness of the proposed approach, and show that the stability and robustness of the uncertain disk brake system can be improved effectively by increasing the stiffness of back plate.

References

1.
Nishiwaki
,
M. R.
,
1990
, “
Review of Study on Brake Squeal
,”
JPN Soc. Automob. Eng. Rev.
,
11
(
4
), pp.
48
54
.
2.
Yang
,
S.
, and
Gibson
,
R. F.
,
1997
, “
Brake Vibration and Noise: Reviews, Comments, and Proposals
,”
Int. J. Mater. Prod. Technol.
,
12
(
4–6
), pp.
496
513
.10.1504/IJMPT.1997.036384
3.
Nishiwaki
,
M.
,
1993
, “
Generalized Theory of Brake Noise
,”
Proc. Inst. Mech. Eng., Part H
,
207
(
3
), pp.
195
202
.10.1243%2fPIME_PROC_1993_207_180_02
4.
Papinniemi
,
A.
,
Lai
,
J. C. S.
,
Zhao
,
J.
, and
Loader
,
L.
,
2002
, “
Brake Squeal: A Literature Review
,”
Appl. Acoust.
,
63
(
4
), pp.
391
400
.10.1016/S0003-682X(01)00043-3
5.
Kinkaid
,
N. M.
,
O'Reilly
,
O. M.
, and
Papadopoulos
,
P.
,
2003
, “
Automotive Disc Brake Squeal: A Review
,”
J. Sound Vib.
,
267
(
1
), pp.
105
166
.10.1016/S0022-460X(02)01573-0
6.
Ouyang
,
H.
,
Nack
,
W.
,
Yuan
,
Y.
, and
Chen
,
F.
,
2005
, “
Numerical Analysis of Automotive Disc Brake Squeal: A Review
,”
Int. J. Veh. Noise Vib.
,
1
(
3–4
), pp.
207
231
.10.1504/IJVNV.2005.007524
7.
AbuBakar
,
A. R.
, and
Ouyang
,
H.
,
2006
, “
Complex Eigenvalue Analysis and Dynamic Transient Analysis in Predicting Disc Brake Squeal
,”
Int. J. Veh. Noise Vib.
,
2
(
2
), pp.
143
155
.10.1504/IJVNV.2006.011051
8.
Liles
,
G. D.
,
1989
, “
Analysis of Disc Brake Squeal Using Finite Element Methods
,”
SAE
Paper No. 891150.10.4271/891150
9.
Chargin
,
M. L.
,
Dunne
,
L. W.
, and
Herting
,
D. N.
,
1997
, “
Nonlinear Dynamics of Brake Squeal
,”
Finite Elem. Anal. Des.
,
28
(
1
), pp.
69
82
.10.1016/S0168-874X(97)81963-4
10.
Ouyang
,
H.
,
Li
,
W.
, and
Mottershead
,
J. E.
,
2003
, “
A Moving-Load Model for Disc-Brake Stability Analysis
,”
ASME J. Vib. Acoust.
,
125
(
1
), pp.
53
58
.10.1115/1.1521954
11.
Guan
,
D.
,
Su
,
X.
, and
Zhang
,
F.
,
2006
, “
Sensitivity Analysis of Brake Squeal Tendency to Substructures' Modal Parameters
,”
J. Sound Vib.
,
291
(
1–2
), pp.
72
80
.10.1016/j.jsv.2005.05.023
12.
Fritz
,
G.
,
Sinou
,
J. J.
,
Duffal
,
J. M.
,
Jézéquel
,
L.
,
2007
, “
Investigation of the Relationship Between Damping and Mode-Coupling Patterns in Case of Brake Squeal
,”
J. Sound Vib.
,
307
(
3–5
), pp.
591
609
.10.1016/j.jsv.2007.06.041
13.
Liu
,
P.
,
Zheng
,
H.
,
Cai
,
C.
,
Wang
,
Y. Y.
,
Lu
,
C.
,
Ang
,
K. H.
, and
Liu
,
G. R.
,
2007
, “
Analysis of Disc Brake Squeal Using the Complex Eigenvalue Method
,”
Appl. Acoust.
,
68
(
6
), pp.
603
615
.10.1016/j.apacoust.2006.03.012
14.
Junior
,
M. T.
,
Gerges
,
S. N. Y.
, and
Jordan
,
R.
,
2008
, “
Analysis of Brake Squeal Noise Using the Finite Element Method: A Parametric Study
,”
Appl. Acoust.
,
69
(
2
), pp.
147
162
.10.1016/j.apacoust.2007.10.003
15.
Dai
,
Y.
, and
Lim
,
T. C.
,
2008
, “
Suppression of Brake Squeal Noise applying Finite Element Brake and Pad Model Enhanced by Spectral-Based Assurance Criteria
,”
Appl. Acoust.
,
69
(
3
), pp.
196
214
.10.1016/j.apacoust.2006.09.010
16.
Nouby
,
M.
,
Mathivanan
,
D.
, and
Srinivasan
,
K.
,
2009
, “
A Combined Approach of Complex Eigenvalue Analysis and Design of Experiments (DOE) to Study Disc Brake Squeal
,”
Int. J. Eng. Sci. Technol.
,
1
(
1
), pp.
254
271
.
17.
Chittepu
,
K.
,
2011
, “
Robustness Evaluation of Brake Systems Concerned to Squeal Noise Problem
,”
SAE
Paper No. 2011-26-0059.10.4271/2011-26-0059
18.
Sarrouy
,
E.
,
Dessombz
,
O.
, and
Sinou
,
J. J.
,
2013
, “
Piecewise Polynomial Chaos Expansion With an Application to Brake Squeal of a Linear Brake System
,”
J. Sound Vib.
,
332
(
3–4
), pp.
577
594
.10.1016/j.jsv.2012.09.009
19.
Stefanou
,
G.
,
2009
, “
The Stochastic Finite Element Method: Past, Present and Future
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9–12
), pp.
1031
1051
.10.1016/j.cma.2008.11.007
20.
Moore
,
R.
, and
Lodwick
,
W.
,
2003
, “
Interval Analysis and Fuzzy Set Theory
,”
Fuzzy Set. Syst.
,
135
(
1
), pp.
5
9
.10.1016/S0165-0114(02)00246-4
21.
Baş
,
D.
, and
Boyacı
,
İ. H.
,
2007
, “
Modeling and Optimization I: Usability of Response Surface Methodology
,”
J. Food Eng.
,
78
(
3
), pp.
836
845
.10.1016/j.jfoodeng.2005.11.024
22.
Mayers
,
R. H.
, and
Montgomery
,
D. C.
,
2002
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
New York
.
23.
Kruse
,
S.
, and
Hoffmann
,
N. P.
,
2013
, “
On the Robustness of Instabilities in Friction-Induced Vibration
,”
ASME J. Vib. Acoust.
,
135
(
6
), p.
061013
.10.1115/1.4024939
24.
Gao
,
W.
,
Wu
,
D.
,
Song
,
C.
,
Tin-Loi
,
F.
, and
Li
,
X.
,
2011
, “
Hybrid Probabilistic Interval Analysis of Bar Structures With Uncertainty Using a Mixed Perturbation Monte Carlo Method
,”
Finite Elem. Anal. Des.
,
47
(
7
), pp.
643
652
.10.1016/j.finel.2011.01.007
25.
Cao
,
Q.
,
Ouyang
,
H.
,
Friswell
,
M. I.
, and
Mottershead
,
J. E.
,
2004
, “
Linear Eigenvalue Analysis of the Disc-Brake Squeal Problem
,”
Int. J. Numer. Methods Eng.
,
61
(
9
), pp.
1546
1563
.10.1002/nme.1127
26.
Papila
,
M.
,
2001
, “
Accuracy of Response Surface Approximations for Weight Equations Based on Structural Optimization
,” Ph.D., thesis, University of Florida, Gainesville, FL.
27.
Fu
,
J.
,
Zhao
,
Y.
, and
Wu
,
Q.
,
2007
, “
Optimising Photoelectrocatalytic Oxidation of Fulvic Acid Using Response Surface Methodology
,”
J. Hazard. Mater.
,
144
(
1–2
), pp.
499
505
.10.1016/j.jhazmat.2006.10.071
28.
Joglekar
,
A. M.
, and
May
,
A. T.
,
1987
, “
Product Excellence Through Design of Experiments
,”
Cereal Foods World
,
32
, pp.
857
868
.
29.
Kim
,
H. K.
,
Kim
,
J. G.
,
Cho
,
J. D.
, and
Hong
,
J. W.
,
2003
, “
Optimization and Characterization of UV-Curable Adhesives for Optical Communications by Response Surface Methodology
,”
Polym. Test.
,
22
(
8
), pp.
899
906
.10.1016/S0142-9418(03)00038-2
30.
Hou
,
J.
,
Guo
,
X. X.
, and
Tan
,
G. F.
,
2009
, “
Complex Mode Analysis on Disc-Brake Squeal and Design Improvement
,”
SAE
Technical Paper No. 2009-01-2101.10.4271/2009-01-2101
31.
Butlin
,
T.
, and
Woodhouse
,
J.
,
2010
, “
Friction-Induced Vibration: Quantifying Sensitivity and Uncertainty
,”
J. Sound Vib.
,
329
(
5
), pp.
509
526
.10.1016/j.jsv.2009.09.026
32.
Melchers
,
R. E.
, and
Ahammed
,
M.
,
2004
, “
A Fast Approximate Method for Parameter Sensitivity Estimation in Monte Carlo Structural Reliability
,”
Comput. Struct.
,
82
(
1
), pp.
55
61
.10.1016/j.compstruc.2003.08.003
You do not currently have access to this content.