The paper presents the developed algorithm which implements the indirect variational boundary element method (IVBEM) for computation of the free-field acoustic radiation characteristics of vibrating rectangle-shaped plate structures with arbitrary boundary conditions. In order to significantly reduce the computational time and cost, the algorithm takes advantage of simple geometry of the considered problem and symmetries between the elements. The procedure of determining the distribution of acoustic pressure is illustrated on the example of thin, rectangular plate with a part of one edge clamped and all other edges free. The eigenfrequencies and the corresponding vibrational mode shapes of the plate are computed using the finite element method (FEM). The results of the numerical simulations are compared to the results of the experiments carried out in an anechoic chamber, proving good agreement between the predictions and the observations. The reliability of simulations and high computational efficiency make the developed algorithm a useful tool in analysis of the acoustic radiation characteristics of vibrating plate structures.

References

1.
Fuller
,
C. R.
,
1985
, “
Experiments on Reduction of Aircraft Interior Noise Using Active Control of Fuselage Vibration
,”
J. Acoust. Soc. Am.
,
78
(
S1
), p.
S88
.10.1121/1.2023050
2.
Fuller
,
C. R.
,
1987
, “
Apparatus and Method for Global Noise Reduction
,” U.S. Patent No. 4,715,559.
3.
Fuller
,
C. R.
, and
Silcox
,
R. J.
,
1992
, “
Acoustics 1991: Active Structural Acoustic Control
,”
J. Acoust. Soc. Am.
,
91
(
1
), p.
519
.10.1121/1.402743
4.
Hansen
,
C. H.
, and
Snyder
,
S. D.
,
1991
, “
Effect of Geometric and Structural/Acoustic Variables on the Active Control of Sound Radiation From a Vibrating Surface
,”
Conference on Recent Advances in Active Control of Sound and Vibration
, Blacksburg, VA, Apr. 15–17, Vol.
1
, pp.
487
505
.
5.
Thi
,
E. U.
, and
Zuniga
,
M.
,
1991
, “
Comparison of Design Approaches in Sound Radiation Suppression
,”
Conference on Recent Advances in Active Control of Sound and Vibration
, Blacksburg, VA, Apr. 15–17, Vol.
1
, pp.
15
17
.
6.
Thomas
,
D. R.
,
Nelson
,
P. A.
, and
Elliott
,
S. J.
,
1990
, “
Experiments on the Active Control of the Transmission of Sound Through a Clamped Rectangular Plate
,”
J. Sound Vib.
,
139
(
2
), pp.
351
355
.10.1016/0022-460X(90)90896-8
7.
Baumann
,
W. T.
,
Saunders
,
W. R.
, and
Robertshaw
,
H. H.
,
1991
, “
Active Suppression of Acoustic Radiation From Impulsively Excited Structures
,”
J. Acoust. Soc. Am.
,
90
(
6
), pp.
3202
3208
.10.1121/1.401429
8.
Nowak
,
L. J.
, and
Zieliński
,
T. G.
,
2013
, “
Modal Sensitivity and Selectivity of Small, Rectangle-Shaped Piezoelectric Transducers Used as Sensors and Actuators in Active Vibroacoustic Control Systems
,”
J. Low Freq. Noise Vib. Act. Control
,
32
(
4
), pp.
253
272
.10.1260/0263-0923.32.4.253
9.
Fuller
,
C. R.
,
Elliot
,
S. J.
, and
Nelson
,
P. A.
,
1996
,
Active Control of Vibration
,
Academic Press
,
London
.
10.
Maidanik
,
G.
, and
Kerwin
,
E. M.
,
1966
, “
Influence of Fluid Loading on the Radiation From Infinite Plates Below the Critical Frequency
,”
J. Acoust. Soc. Am.
,
40
(
5
), pp.
1034
1038
.10.1121/1.1910184
11.
Stuart
,
A. D.
,
1976
, “
Acoustic Radiation From Submerged Plates. I. Influence of Leaky Wave Poles
,”
J. Acoust. Soc. Am.
,
59
(
5
), pp.
1160
1169
.10.1121/1.380978
12.
Stuart
,
A. D.
,
1976
, “
Acoustic Radiation From Submerged Plates. II. Radiated Power and Damping
,”
J. Acoust. Soc. Am.
,
59
(
5
), pp.
1170
1174
.10.1121/1.380979
13.
Leniowska
,
L
.,
1997
, “
Acoustic Power of Fluid-Loaded Circular Plate Located in Finite Baffle
,”
Arch. Acoust.
,
22
(
4
), pp.
423
435
.http://acoustics.ippt.pan.pl/index.php/aa/article/view/966
14.
Nelisse
,
H.
,
Beslin
,
O.
, and
Nicolas
,
J.
,
1998
, “
A Generalized Approach for the Acoustic Radiation From a Baffled or Unbaffled Plate With Arbitrary Boundary Conditions, Immersed in a Light or Heavy Fluid
,”
J. Sound Vib.
,
211
(
2
), pp.
207
225
.10.1006/jsvi.1997.1359
15.
Nowak
,
Ł.
, and
Zieliński
,
T. G.
,
2012
, “
Acoustic Radiation of Vibrating Plate Structures Submerged in Water
,”
Hydroacoustics
,
15
, pp.
163
170
.http://pta.eti.pg.gda.pl/journal/referaty/vol15-pp163-a3bfec80-f317-4402-9191-4f624eaf527f.pdf
16.
Malecki
,
I.
,
1964
,
Theory of Waves and Acoustic Systems (in Polish)
,
PWN
,
Warszawa, Poland
.
17.
Leissa
,
A. W.
, and
Qatu
,
M. S.
,
2011
,
Vibrations of Continuous Systems
,
McGraw-Hill
,
New York
.
18.
Zielinski
,
T. G.
,
2010
, “
Multiphysics Modeling and Experimental Validation of the Active Reduction of Structure-Borne Noise
,”
ASME J. Vib. Acoust.
,
132
(
6
), p.
061008
.10.1115/1.4001844
19.
Zielinski
,
T. G.
,
Galland
,
M. A.
, and
Ichchou
,
M. N.
,
2012
, “
Fully Coupled Finite-Element Modeling of Active Sandwich Panels With Poroelastic Core
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021007
.10.1115/1.4005026
20.
Thompson
,
L. L.
,
2006
, “
A Review of Finite-Element Methods for Time-Harmonic Acoustics
,”
J. Acoust. Soc. Am.
,
119
(
3
), pp.
1315
1330
.10.1121/1.2164987
21.
Harari
,
I
.,
2006
, “
A Survey of Finite Element Methods for Time-Harmonic Acoustics
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
13
), pp.
1594
1607
.10.1016/j.cma.2005.05.030
22.
Ihlenburg
,
F.
,
1998
,
Finite Element Analysis of Acoustic Scattering
,
Springer-Verlag
,
New York
.
23.
Wu
,
H.
,
Jiang
,
W.
, and
Liu
,
Y.
,
2013
, “
Analyzing Acoustic Radiation Modes of Baffled Plates With a Fast Multipole Boundary Element Method
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011007
.10.1115/1.4007023
24.
Harari
,
I.
, and
Hughes
,
T. J.
,
1992
, “
A Cost Comparison of Boundary Element and Finite Element Methods for Problems of Time-Harmonic Acoustics
,”
Comput. Methods Appl. Mech. Eng.
,
97
(
1
), pp.
77
102
.10.1016/0045-7825(92)90108-V
25.
Kopuz
,
S.
, and
Lalor
,
N.
,
1995
, “
Analysis of Interior Acoustic Fields Using the Finite Element Method and the Boundary Element Method
,”
Appl. Acoust.
,
45
(
3
), pp.
193
210
.10.1016/0003-682X(94)00045-W
26.
Desmet
,
W
.,
2012
, “
Boundary Element Method in Acoustics
,”
International Seminar on Applied Acoustics (ISAAC 23)—Course on Numerical and Applied Acoustics
Leuven, Belgium, Sept. 20–21, pp.
16
25
.
27.
Jabłoński
,
P.
,
2003
,
Metoda elementów brzegowych w analizie pola elektromagnetycznego (Finite Element Method in the Analysis of Electromagnetic Field, in Polish)
,
Wydawnictwo Politechniki
,
Czestochowskiej, Poland
.
28.
Ciskowski
,
R. D.
, and
Brebbia
,
C. A.
,
1991
,
Boundary Element Methods in Acoustics
,
Computational Mechanics Publications
,
New York
.
29.
Gaul
,
L.
,
Kögl
,
M.
, and
Wagner
,
M.
,
2003
,
Boundary Element Methods for Engineers and Scientists
,
Springer-Verlag
,
Heidelberg
.
30.
Kirkup
,
S.
,
2007
,
The Boundary Element Method in Acoustics
,
Integrated Sound Software
,
Hebden Bridge, UK
.
31.
Alia
,
A.
,
Souli
,
M.
, and
Erchiqui
,
F.
,
2006
, “
Variational Boundary Element Acoustic Modelling Over Mixed Quadrilateral-Triangular Element Meshes
,”
Commun. Numer. Methods Eng.
,
22
(
7
), pp.
767
780
.10.1002/cnm.848
32.
Wang
,
W.
, and
Atalla
,
N.
,
1997
, “
A Numerical Algorithm for Double Surface Integrals Over Quadrilaterals With a 1/R Singularity
,”
Commun. Numer. Methods Eng.
,
13
(
11
), pp.
885
890
.10.1002/(SICI)1099-0887(199711)13:11<885::AID-CNM112>3.0.CO;2-D
You do not currently have access to this content.