This paper reports a higher-order analytic energy operator (HO-AEO) approach to monitoring bearing health conditions from vibrations signals that are polluted by strong noise and multiple interferences. The proposed analytic energy operator (AEO) is formed using the raw signal, its Hilbert transform, and their derivatives. In analogy to the conventional energy operator (EO), it represents an alternative energy transformation. However, unlike the conventional EO, it exploits the information from both the real and imaginary parts of the analytic signal. It can also extract both the amplitude and frequency modulations and is thus well suited for detecting impulsive fault signature. The joint use of multiple higher-order AEOs can further offset noise effect. The built-in amplitude demodulation (AD) capability of the proposed HO-AEO eliminates the enveloping step required by most high-frequency resonance (HFR) methods. The method is simple and easy to implement. Our simulation and experimental results have demonstrated that the proposed method can effectively extract bearing fault signature in the presence of heavy noise and multiple vibration interferences. It has also been shown mathematically that the HO-AEO processed signal yields higher signal-to-interference ratio (SIR) than the conventional EO does. The simulation and experimental comparisons also indicate that the proposed method has much better noise and interference handling capabilities than the conventional EO.

References

1.
Van Hecke
,
B.
,
He
,
D.
, and
Qu
,
Y.
,
2014
, “
On the Use of Spectral Averaging of Acoustic Emission Signals for Bearing Fault Diagnostics
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061009
.10.1115/1.4028322
2.
Wang
,
T.
,
Liang
,
M.
,
Li
,
J.
, and
Cheng
,
W.
,
2014
, “
Rolling Element Bearing Fault Diagnosis Via Fault Characteristic Order (FCO) Analysis
,”
Mech. Syst. Signal Process.
,
45
(
1
), pp.
139
153
.10.1016/j.ymssp.2013.11.011
3.
Hou
,
S.
,
Liang
,
M.
,
Zhang
,
Y.
, and
Li
,
C.
,
2014
, “
Vibration Signal Demodulation and Bearing Fault Detection: A Clustering-Based Segmentation Method
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
11
), pp.
1888
1899
.10.1177/0954406213514960
4.
Zhang
,
A.
,
Hu
,
F.
,
He
,
Q.
,
Shen
,
C.
,
Liu
,
F.
, and
Kong
,
F.
,
2014
, “
Doppler Shift Removal Based on Instantaneous Frequency Estimation for Wayside Fault Diagnosis of Train Bearings
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021019
.10.1115/1.4026431
5.
Li
,
C.
, and
Liang
,
M.
,
2012
, “
Continuous-Scale Mathematical Morphology-Based Optimal Scale Band Demodulation of Impulsive Feature for Bearing Defect Diagnosis
,”
J. Sound Vib.
,
331
(
26
), pp.
5864
5979
.10.1016/j.jsv.2012.07.045
6.
Li
,
C.
,
Liang
,
M.
,
Zhang
,
Y.
, and
Hou
,
S.
,
2012
, “
Multi-Scale Autocorrelation Via Morphological Wavelet Slices for Rolling Element Bearing Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
31
, pp.
428
446
.10.1016/j.ymssp.2012.03.012
7.
Khanam
,
S.
,
Dutt
,
J. K.
, and
Tandon
,
N.
,
2014
, “
Extracting Rolling Element Bearing Faults From Noisy Vibration Signal Using Kalman Filter
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031008
.10.1115/1.4026946
8.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Vibration Monitoring of Rolling Element Bearings by the High-Frequency Resonance Technique—A Review
,”
Tribol. Int.
,
17
(
1
), pp.
3
10
.10.1016/0301-679X(84)90076-8
9.
Luo
,
J.
,
Yu
,
D.
, and
Liang
,
M.
,
2013
, “
A Kurtosis-Guided Adaptive Demodulation Technique for Bearing Fault Detection Based on Tunable-Q Wavelet Transform
,”
Meas. Sci. Technol.
,
24
(
5
), p.
055009
.10.1088/0957-0233/24/5/055009
10.
Wang
,
W.
,
2001
, “
Early Detection of Gear Tooth Cracking Using the Resonance Demodulation Technique
,”
Mech. Syst. Signal Process.
,
15
(
5
), pp.
887
903
.10.1006/mssp.2001.1416
11.
Sheen
,
Y.-T.
,
2007
, “
An Analysis Method for the Vibration Signal With Amplitude Modulation in a Bearing System
,”
J. Sound Vib.
,
303
(
3–5
), pp.
538
552
.10.1016/j.jsv.2007.01.035
12.
Wang
,
H.
, and
Chen
,
P.
,
2008
, “
Intelligent Diagnosis Method for a Centrifugal Pump Using Features of Vibration Signals
,”
Neural Comput. Appl.
,
18
(
4
), pp.
397
405
.10.1007/s00521-008-0192-4
13.
Ho
,
D.
, and
Randall
,
R. B.
,
2000
, “
Optimisation of Bearing Diagnostic Techniques Using Simulated and Actual Bearing Fault Signals
,”
Mech. Syst. Signal Process.
,
14
(
5
), pp.
763
788
.10.1006/mssp.2000.1304
14.
Antoni
,
J.
,
2006
, “
The Spectral Kurtosis: A Useful Tool for Characterising Non-Stationary Signals
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
282
307
.10.1016/j.ymssp.2004.09.001
15.
Barszcz
,
T.
, and
Randall
,
R. B.
,
2009
, “
Application of Spectral Kurtosis for Detection of a Tooth Crack in the Planetary Gear of a Wind Turbine
,”
Mech. Syst. Signal Process.
,
23
(
4
), pp.
1352
1365
.10.1016/j.ymssp.2008.07.019
16.
Antoni
,
J.
,
2007
, “
Cyclic Spectral Analysis of Rolling-Element Bearing Signals: Facts and Fictions
,”
J. Sound Vib.
,
304
(
3–5
), pp.
497
529
.10.1016/j.jsv.2007.02.029
17.
Wang
,
Y.
, and
Liang
,
M.
,
2011
, “
An Adaptive SK Technique and Its Application for Fault Detection of Rolling Element Bearings
,”
Mech. Syst. Signal Process.
,
25
(
5
), pp.
1750
1764
.10.1016/j.ymssp.2010.12.008
18.
Wang
,
Y.
, and
Liang
,
M.
,
2012
, “
Identification of Multiple Transient Faults Based on the Adaptive Spectral Kurtosis Method
,”
J. Sound Vib.
,
331
(
2
), pp.
470
486
.10.1016/j.jsv.2011.08.029
19.
Zhang
,
Y.
,
Liang
,
M.
,
Li
,
C.
, and
Hou
,
S.
,
2013
, “
A Joint Kurtosis-Based Adaptive Bandstop Filtering and Iterative Autocorrelation Approach to Bearing Fault Detection
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051026
.10.1115/1.4024610
20.
Bozchalooi
, I
. S.
, and
Liang
,
M.
,
2009
, “
Parameter-Free Bearing Fault Detection Based on Maximum Likelihood Estimation and Differentiation
,”
Meas. Sci. Technol.
,
20
(
6
), p.
065102
.10.1088/0957-0233/20/6/065102
21.
Liang
,
M.
, and
Soltani Bozchalooi
,
I.
,
2010
, “
An Energy Operator Approach to Joint Application of Amplitude and Frequency-Demodulations for Bearing Fault Detection
,”
Mech. Syst. Signal Process.
,
24
(
5
), pp.
1473
1494
.10.1016/j.ymssp.2009.12.007
22.
Feng
,
Z.
,
Zuo
,
M. J.
,
Hao
,
R.
,
Chu
,
F.
, and
Lee
,
J.
,
2013
, “
Ensemble Empirical Mode Decomposition-Based Teager Energy Spectrum for Bearing Fault Diagnosis
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031013
.10.1115/1.4023814
23.
Antoni
,
J.
, and
Randall
,
R. B.
,
2004
, “
Unsupervised Noise Cancellation for Vibration Signals: Part I—Evaluation of Adaptive Algorithms
,”
Mech. Syst. Signal Process.
,
18
(
1
), pp.
89
101
.10.1016/S0888-3270(03)00012-8
24.
Antoni
,
J.
, and
Randall
,
R. B.
,
2004
, “
Unsupervised Noise Cancellation for Vibration Signals: Part II—A Novel Frequency-Domain Algorithm
,”
Mech. Syst. Signal Process.
,
18
(
1
), pp.
103
117
.10.1016/S0888-3270(03)00013-X
25.
Widrow
,
B.
,
Glover
,
J. R.
, Jr.
,
McCool
,
J. M.
,
Kaunitz
,
J.
,
Williams
,
C. S.
,
Hearn
,
R. H.
,
Zeidler
,
J. R.
,
Dong
,
E.
, Jr.
, and
Goodlin
,
R. C.
,
1975
, “
Adaptive Noise Cancelling: Principles and Applications
,”
Proc. IEEE
,
63
(
12
), pp.
1692
1716
.10.1109/PROC.1975.10036
26.
Feng
,
Z.
,
Liang
,
M.
, and
Chu
,
F.
,
2013
, “
Recent Advances in Time-Frequency Analysis Methods for Machinery Fault Diagnosis: A Review With Application Examples
,”
Mech. Syst. Signal Process.
,
38
(
1
), pp.
165
205
.10.1016/j.ymssp.2013.01.017
27.
Feldman
,
M
.,
2011
, “
Hilbert Transform in Vibration Analysis
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
735
802
.10.1016/j.ymssp.2010.07.018
28.
Potamianos
,
A.
, and
Maragos
,
P.
,
1994
, “
A Comparison of the Energy Operator and the Hilbert Transform Approach to Signal and Speech Demodulation
,”
Signal Process.
,
37
(
1
), pp.
95
120
.10.1016/0165-1684(94)90169-4
29.
Feldman
,
M.
,
1994
, “
Non-Linear System Vibration Analysis Using Hilbert Transform—I. Free Vibration Analysis Method ‘Freevib’
,”
Mech. Syst. Signal Process.
,
8
(
2
), pp.
119
127
.10.1006/mssp.1994.1011
30.
Feldman
,
M.
,
1994
, “
Non-Linear System Vibration Analysis Using Hilbert Transform—II. Forced Vibration Analysis Method ‘Forcevib’
,”
Mech. Syst. Signal Process.
,
8
(
3
), pp.
309
318
.10.1006/mssp.1994.1023
31.
Reed
,
J.
,
2005
,
Introduction to Ultra Wideband Communication Systems
, 1st ed.,
Prentice Hall Press
,
Upper Saddle River, NJ
.
32.
Nelson
,
R.
,
2006
, “
Time-Normalized Yield: A Natural Unit for Effect Size in Anomalies Experiments
,”
J. Sci. Explor.
,
20
(
2
), pp.
177
199
.
33.
Cohen
,
I.
, and
Berdugo
,
B.
,
2002
, “
Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement
,”
IEEE Signal Process. Lett.
,
9
(
1
), pp.
12
15
.10.1109/97.988717
34.
Bovik
,
A. C.
,
Maragos
,
P.
, and
Quatieri
,
T. F.
,
1993
, “
AM-FM Energy Detection and Separation in Noise Using Multiband Energy Operators
,”
IEEE Trans. Signal Process.
,
41
(
12
), pp.
3245
3265
.10.1109/78.258071
35.
Maragos
,
P.
,
Kaiser
,
J. F.
, and
Quatieri
,
T. F.
,
1993
, “
On Amplitude and Frequency Demodulation Using Energy Operators
,”
IEEE Trans. Signal Process.
,
41
(
4
), pp.
1532
1550
.10.1109/78.212729
You do not currently have access to this content.