In this paper, we develop a mathematical analysis to gain insights of mode localization often encountered in nearly cyclic symmetric rotors that contain slight mistune. First, we conduct a Fourier analysis in the spatial domain to show that mode localization can appear only when a group of tuned rotor modes form a complete set in the circumferential direction. In light of perturbation theories, these tuned rotor modes must also have very similar natural frequencies, so that they can be linearly combined to form localized modes when the mistune is present. Second, the natural frequency of these tuned rotor modes can further be represented in terms of a mean frequency and a deviatoric component. A Rayleigh–Ritz formulation then shows that mode localization occurs only when the deviatoric component and the rotor mistune are about the same order. As a result, we develop an effective visual method—through use of the deviatoric component and the rotor mistune—to precisely identify those modes needed to form localized modes. Finally, we show that curve veering is not a necessary condition for mode localization to occur in the context of free vibration. Not all curve veering leads to mode localization, and not all modes in curve veering contribute to mode localization. Numerical examples on a disk–blade system with mistune confirm all the findings above.

References

References
1.
Srinivansan
,
A. V.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
742
775
.10.1115/1.2817053
2.
Whitehead
,
D. S.
,
1966
, “
Effect of Mistuning on the Vibration of Turbomachine Blades Induced by Wakes
,”
J. Mech. Eng. Sci.
,
8
(
1
), pp.
15
21
.10.1243/JMES_JOUR_1966_008_004_02
3.
Vakais
,
A. F.
, and
Cetinkaya
,
C.
,
1993
, “
Mode Localization in a Class of Multidegree-of-Freedom Nonlinear Systems With Cyclic Symmetry
,”
SIAM J. Appl. Math.
,
53
(
1
), pp.
265
282
.10.1137/0153016
4.
Dye
,
R. C. F.
, and
Henry
,
T. A.
,
1969
, “
Vibration Amplitudes of Compressor Blades Resulting From Scatter in Blade Natural Frequencies
,”
ASME J. Eng. Gas Turbines Power
,
91
(
3
), pp.
182
187
.10.1115/1.3574726
5.
Ewins
,
D.
,
1969
, “
The Effects of Detuning Upon the Forced Vibrations of Bladed Disks
,”
J. Sound Vib.
,
9
(
1
), pp.
65
79
.10.1016/0022-460X(69)90264-8
6.
Griffin
,
J. H.
, and
Hoosac
,
T. M.
,
1984
, “
Model Development and Statistical Investigation of Turbine Blade Mistuning
,”
ASME J. Vib. Acoust.
,
106
(
2
), pp.
204
210
.10.1115/1.3269170
7.
Ottarsson
,
G.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
1997
, “
A Reduced Order Modeling Technique for Mistuned Bladed Disks
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
439
447
.10.1115/1.2889743
8.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.10.1115/1.1338947
9.
Griffin
,
J.
, and
Yang
,
M.-T.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
119
(
1
), pp.
161
167
.10.1115/1.1385197
10.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.10.1115/1.1508384
11.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model Part I: Theory
,”
ASME J. Turbomach.
,
126
(
1
), pp.
150
158
.10.1115/1.1643913
12.
Sinha
,
A.
,
2009
, “
Reduced-Order Model of a Bladed Rotor With Geometric Mistuning
,”
ASME J. Turbomach.
,
131
(
1
), p.
031007
.10.1115/1.2987237
13.
Sinha
,
A.
,
2010
, “
Computation of Eigenvalues and Eigenvectors of a Mistuned Bladed Disk Via Unidirectional Taylor Series Expansions
,”
ASME J. Turbomach.
,
132
(
4
), p.
044501
.10.1115/1.3142863
14.
Lim
,
S. H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for, Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.10.2514/1.13172
15.
Pierre
,
C.
,
1988
, “
Mode Localization and Eigenvalue Loci Veering Phenomena in Disordered Structures
,”
J. Sound Vib.
,
126
(
3
), pp.
485
502
.10.1016/0022-460X(88)90226-X
16.
Chan
,
H. C.
, and
Liu
,
J. K.
,
2000
, “
Mode Localization and Frequency Loci Veering in Disordered Engineering Structures
,”
Chaos, Solitons Fractals
,
11
(
10
), pp.
1493
1504
.10.1016/S0960-0779(99)00073-9
17.
Hodges
,
C. H.
,
1982
, “
Confinement of Vibration by Structural Irregularity
,”
J. Sound Vib.
,
82
(
3
), pp.
411
424
.10.1016/S0022-460X(82)80022-9
18.
Wei
,
S.-T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry Part I: Free Vibrations
,”
ASME J. Vib. Acoust.
,
110
(
4
), pp.
429
438
.10.1115/1.3269547
19.
Kim
,
H.
, and
Shen
,
I. Y.
,
2009
, “
Ground-Based Vibration Response of a Spinning, Cyclic, Symmetric Rotor With Gyroscopic and Centrifugal Softening Effects
,”
ASME J. Vib. Acoust.
,
131
(
2
), p.
021007
.10.1115/1.3025847
20.
Kenyon
,
J. A.
,
Griffin
,
J. H.
, and
Kim
,
N. E.
,
2004
, “
Frequency Veering Effects on Mistuned Bladed Disk Forced Response
,”
J. Propul. Power
,
20
(
5
), pp.
863
870
.10.2514/1.3111
You do not currently have access to this content.