In this paper, spectral finite elements (SFEs) are developed for wave propagation analysis of isotropic curved beams using three different beam models: (1) the refined third-order shear deformation theory (TOT), (2) the first-order shear deformation theory (FSDT), and (3) the classical shell theory (CST). The formulation is validated by comparing the results for the wavenumber dispersion relations and natural frequencies with the published results based on the FSDT. The numerical study reveals that even for a very thin curved beam with radius-to-thickness ratio of 1000, the wavenumbers predicted by the CST at high frequencies show significant deviation from those of the shear deformable theories, FSDT and TOT. The FSDT results for the wavenumber of the flexural displacement mode differ significantly from the TOT results at high frequencies even for thin beams. The deviation increases and occurs at lower frequencies with the decrease in the radius-to-thickness ratio. The results for wave propagation response show that the CST yields highly erroneous response for flexural mode wave propagation even for thin beams and at a relatively low frequency of 20 kHz. The FSDT results too differ by unacceptably high margin from the TOT results for flexural wave response of thin beams at frequencies greater than 100 kHz, which are typically used for structural health monitoring (SHM) applications. For thick beams, FSDT results for the tangential wave response also show large deviation from the TOT results.

References

1.
Davis
,
R.
,
Henshell
,
R. D.
, and
Warburton
,
G. B.
,
1972
, “
Curved Beam Finite Elements for Coupled Bending and Torsional Vibration
,”
Earthquake Eng. Struct. Dyn.
,
1
(
2
), pp.
165
175
.10.1002/eqe.4290010205
2.
Friedman
,
Z.
, and
Kosmatka
,
J. B.
,
1998
, “
An Accurate Two-Node Finite Element for Shear Deformable Curved Beams
,”
Int. J. Numer. Methods Eng.
,
41
(
3
), pp.
473
498
.10.1002/(SICI)1097-0207(19980215)41:3<473::AID-NME294>3.0.CO;2-Q
3.
Wu
,
J. G.
, and
Chiang
,
L. K.
,
2003
, “
Free Vibration Analysis of Arches Using Curved Beam Elements
,”
Int. J. Numer. Methods Eng.
,
58
(
13
), pp.
1907
1936
.10.1002/nme.837
4.
Yang
,
F.
,
Sedaghati
,
R.
, and
Esmailzadeh
,
E.
,
2008
, “
Free In-Plane Vibration of General Curved Beams Using Finite Element Method
,”
J. Sound Vib.
,
318
(
4–5
), pp.
850
867
.10.1016/j.jsv.2008.04.041
5.
Kang
,
K.
,
Bert
,
C. W.
, and
Striz
,
A. G.
,
1995
, “
Vibration Analysis of Shear Deformable Circular Arches by the Differential Quadrature Method
,”
J. Sound Vib.
,
183
(
2
), pp.
353
360
.10.1006/jsvi.1995.0258
6.
Howson
,
W. P.
, and
Jemah
,
A. K.
,
1999
, “
Exact Out-of-Plane Natural Frequencies of Curved Timoshenko Beams
,”
J. Eng. Mech.
,
125
(
1
), pp.
19
25
.10.1061/(ASCE)0733-9399(1999)125:1(19)
7.
Eisenberger
,
M.
, and
Efraim
,
E.
,
2001
, “
In-Plane Vibrations of Shear Deformable Curved Beams
,”
Int. J. Numer. Methods Eng.
,
52
(
11
), pp.
1221
1234
.10.1002/nme.246
8.
Kang
,
B.
,
Riedel
,
C. H.
, and
Tan
,
C. A.
,
2003
, “
Free Vibration Analysis of Planar Curved Beams by Wave Propagation
,”
J. Sound Vib.
,
260
(
1
), pp.
19
44
.10.1016/S0022-460X(02)00898-2
9.
Lee
,
S. K.
,
Mace
,
B. R.
, and
Brennan
,
M. J.
,
2007
, “
Wave Propagation, Reflection and Transmission in Curved Beams
,”
J. Sound Vib.
,
306
(
3–5
), pp.
636
656
.10.1016/j.jsv.2007.06.001
10.
Xiuchang
,
H.
,
Hongxing
,
H.
,
Wang
,
Y.
, and
Zhipeng
,
D.
,
2013
, “
Research on Wave Mode Conversion of Curved Beam Structures by the Wave Approach
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031014
.10.1115/1.4023817
11.
Walsh
,
S. J.
, and
White
,
R. G.
,
2000
, “
Vibrational Power Transmission in Curved Beams
,”
J. Sound Vib.
,
233
(
3
), pp.
455
488
.10.1006/jsvi.1999.2834
12.
Kang
,
B.
, and
Riedel
,
C. H.
,
2012
, “
Coupling of In-Plane Flexural, Tangential and Shear Wave Modes of a Curved Beam
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011001
.10.1115/1.4004676
13.
Su
,
Z.
, and
Ye
,
L.
,
2009
,
Identification of Damage Using Lamb Waves
,
Springer-Verlag
,
Berlin
.
14.
Jeong
,
C. H.
, and
Ih
,
J. G.
,
2009
, “
Effects of Nearfield Waves and Phase Information on the Vibration Analysis of Curved Beams
,”
J. Mech. Sci. Technol.
,
23
(
8
), pp.
2193
2205
.10.1007/s12206-009-0515-0
15.
Jhang
,
X.
,
Chen
,
X.
,
He
,
Z.
, and
Cao
,
H.
,
2012
, “
The Multivariable Finite Elements Based on B-Spline Wavelet on the Interval for 1D Structural Mechanics
,”
J. Vibroeng.
,
14
(
1
), pp.
363
380
.
16.
Yang
,
Z.
,
Chen
,
X.
,
Li
,
X.
,
Jiang
,
Y.
,
Miao
,
H.
, and
He
,
Z.
,
2014
, “
Wave Motion Analysis in Arch Structures Via Wavelet Finite Element Method
,”
J. Sound Vib.
,
333
(
2
), pp.
446
469
.10.1016/j.jsv.2013.09.011
17.
Hennings
,
B.
,
Lammering
,
R.
, and
Gabbert
,
U.
,
2013
, “
Numerical Simulation of Wave Propagation Using Spectral Finite Elements
,”
CEAS Aeronaut. J.
,
4
(
1
), pp.
3
10
.10.1007/s13272-012-0053-9
18.
Zhou
,
W. J.
, and
Ichchou
,
M. N.
,
2010
, “
Wave Propagation in Mechanical Waveguide With Curved Members Using Wave Finite Element Solution
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
33–36
), pp.
2099
2109
.10.1016/j.cma.2010.03.006
19.
Doyle
,
J. F.
,
1997
,
Wave Propagation in Structures
,
Springer
,
New York
.
20.
Gopalakrishnan
,
S.
,
Chakraborty
,
A.
, and
Mahapatra
,
D. R.
,
2007
,
Spectral Finite Element Method
,
Springer-Verlag
,
London
.
21.
Doyle
,
J. F.
, and
Farris
,
T. N.
,
1990
, “
A Spectrally Formulated Finite Element for Flexural Wave Propagation in Beams
,”
Int. J. Anal. Exp. Modal Anal.
,
5
(2), pp.
99
107
.
22.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2005
, “
Spectrally Formulated Wavelet Finite Element for Wave Propagation and Impact Force Identification in Connected 1D Waveguides
,”
Int. J. Solids Struct.
,
42
(
16–17
), pp.
4695
4721
.10.1016/j.ijsolstr.2005.02.007
23.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2006
, “
Wavelet Based Spectral Finite Element for Analysis of Coupled Wave Propagation in Higher Order Composite Beams
,”
Compos. Struct.
,
73
(
3
), pp.
263
277
.10.1016/j.compstruct.2005.01.038
24.
Lee
,
U.
, and
Jang
,
I.
,
2010
, “
Spectral Element Model for Axially Loaded Bending-Shear-Torsion Coupled Composite Timoshenko Beams
,”
Compos. Struct.
,
92
(
12
), pp.
2860
2870
.10.1016/j.compstruct.2010.04.012
25.
Nanda
,
N.
,
Kapuria
,
S.
, and
Gopalakrishnan
,
S.
,
2014
, “
Spectral Finite Element Based on an Efficient Layerwise Theory for Wave Propagation Analysis of Composite and Sandwich Beams
,”
J. Sound Vib.
,
333
(
14
), pp.
3120
3137
.10.1016/j.jsv.2014.02.036
26.
Samaratunga
,
D.
,
Jha
,
R.
, and
Gopalakrishnan
,
S.
,
2014
, “
Wave Propagation Analysis in Laminated Composite Plates With Transverse Cracks Using the Wavelet Spectral Finite Element Method
,”
Finite Elem. Anal. Des.
,
89
, pp.
19
32
.10.1016/j.finel.2014.05.014
27.
Nath
,
J. K.
, and
Kapuria
,
S.
,
2012
, “
Coupled Efficient Layerwise and Smeared Third-Order Theories for Vibration of Smart Piezolaminated Cylindrical Shells
,”
Compos. Struct.
,
94
(
5
), pp.
1886
1899
.10.1016/j.compstruct.2011.12.015
28.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Rectangular Plates
,”
ASME J. Appl. Mech.
,
18
, pp.
31
38
.
You do not currently have access to this content.