In the last decade, there has been an increasing attention on the use of highly and weakly nonlinear solitary waves in engineering and physics. These waves can form and travel in nonlinear systems such as one-dimensional chains of particles. One engineering application of solitary waves is the fabrication of acoustic lenses, which are employed in a variety of fields ranging from biomedical imaging and surgery to defense systems and damage detection. In this paper, we propose to couple an acoustic lens to a wafer-type lead zirconate titanate (PZT) transducer to harvest energy from the vibration of an object tapping the lens. The lens consists of an ordered array of spherical particles in contact with a polycarbonate material where the nonlinear waves become linear and coalesce ideally into a focal point. The transducer located at the designed focal point converts the mechanical energy carried by the stress waves into electricity to power a load resistor. The performance of the designed harvester is compared to a conventional nonoptimized cantilever beam, and the experimental results show that the power generated with the nonlinear lens has the same order of magnitude of the beam.

References

References
1.
Kim
,
S.
,
Pakzad
,
S.
,
Culler
,
D.
,
Demmel
,
J.
,
Fenves
,
G.
,
Glaser
,
S.
, and
Turon
,
M.
, “
Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks
,”
6th International Symposium on Information Processing in Sensor Networks
(
IPSN 2007
), Cambridge, MA, Apr. 25–27, pp.
254
263
.10.1109/IPSN.2007.4379685
2.
Szewczyk
,
R.
,
Osterweil
,
E.
,
Polastre
,
J.
,
Hamilton
,
M.
,
Mainwaring
,
A.
, and
Estrin
,
D.
,
2004
, “
Habitat Monitoring With Sensor Networks
,”
Commun. ACM
,
47
(
6
), pp.
34
40
.10.1145/990680.990704
3.
Chong
,
C.-Y.
, and
Kumar
,
S. P.
,
2003
, “
Sensor Networks: Evolution, Opportunities, and Challenges
,”
Proc. IEEE
,
91
(
8
), pp.
1247
1256
.10.1109/JPROC.2003.814918
4.
Harb
,
A.
,
2011
, “
Energy Harvesting: State-of-the-Art
,”
Renewable Energy
,
36
(
10
), pp.
2641
2654
.10.1016/j.renene.2010.06.014
5.
Peigney
,
M.
, and
Siegert
,
D.
,
2013
, “
Piezoelectric Energy Harvesting From Traffic-Induced Bridge Vibrations
,”
Smart Mater. Struct.
,
22
(
9
), p.
095019
.10.1088/0964-1726/22/9/095019
6.
Sudevalayam
,
S.
, and
Kulkarni
,
P.
,
2011
, “
Energy Harvesting Sensor Nodes: Survey and Implications
,”
IEEE Commun. Surv. Tutorials
,
13
(
3
), pp.
443
461
.10.1109/SURV.2011.060710.00094
7.
Dagdeviren
,
C.
,
Yang
,
B. D.
,
Su
,
Y.
,
Tran
,
P. L.
,
Joe
,
P.
,
Anderson
,
E.
,
Xia
,
J.
,
Doraiswamy
,
V.
,
Dehdashti
,
B.
,
Feng
,
X.
,
Lu
,
B.
,
Poston
,
R.
,
Khalpey
,
Z.
,
Ghaffari
,
R.
,
Huang
,
Y.
,
Slepian
,
M. J.
, and
Rogers
,
J. A.
,
2014
, “
Conformal Piezoelectric Energy Harvesting and Storage From Motions of the Heart, Lung, and Diaphragm
,”
Proc. Natl. Acad. Sci.
,
111
(
5
), pp.
1927
1932
.10.1073/pnas.1317233111
8.
Kim
,
H.
,
Tadesse
,
Y.
, and
Priya
,
S.
,
2009
, “
Piezoelectric Energy Harvesting
,”
Energy Harvesting Technologies
,
Springer
, New York, pp.
3
39
.
9.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
(
12
), pp.
R175
R195
.10.1088/0957-0233/17/12/R01
10.
Cha
,
Y.
,
Kim
,
H.
, and
Porfiri
,
M.
,
2013
, “
Energy Harvesting From Underwater Base Excitation of a Piezoelectric Composite Beam
,”
Smart Mater. Struct.
,
22
(
11
),
p
. 115026.10.1088/0964-1726/22/11/115026
11.
Kim
,
S.-H.
,
Ahn
,
J.-H.
,
Chung
,
H.-M.
, and
Kang
,
H.-W.
,
2011
, “
Analysis of Piezoelectric Effects on Various Loading Conditions for Energy Harvesting in a Bridge System
,”
Sens. Actuators A
,
167
(
2
), pp.
468
483
.10.1016/j.sna.2011.03.007
12.
Zuo
,
L.
, and
Zhang
,
P.-S.
,
2013
, “
Energy Harvesting, Ride Comfort, and Road Handling of Regenerative Vehicle Suspensions
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011002
.10.1115/1.4007562
13.
Kymissis
,
J.
,
Kendall
,
C.
,
Paradiso
,
J.
, and
Gershenfeld
,
N.
, “
Parasitic Power Harvesting in Shoes
,”
Second International Symposium on Wearable Computers
, Pittsburgh, PA, Oct. 19–20, pp.
132
139
.10.1109/ISWC.1998.729539
14.
Smoker
,
J.
,
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2012
, “
Energy Harvesting From a Standing Wave Thermoacoustic-Piezoelectric Resonator
,”
J. Appl. Phys.
,
111
(
10
), p.
104901
.10.1063/1.4712630
15.
Marioli
,
D.
,
Sardini
,
E.
, and
Serpelloni
,
M.
,
2009
, “
Electromagnetic Generators Employing Planar Inductors for Autonomous Sensor Applications
,”
Procedia Chem.
,
1
(
1
), pp.
469
472
.10.1016/j.proche.2009.07.117
16.
Cuadras
,
A.
,
Gasulla
,
M.
, and
Ferrari
,
V.
,
2010
, “
Thermal Energy Harvesting Through Pyroelectricity
,”
Sens. Actuators A
,
158
(
1
), pp.
132
139
.10.1016/j.sna.2009.12.018
17.
Couch
,
S.
, and
Bryden
,
I.
,
2006
, “
Tidal Current Energy Extraction: Hydrodynamic Resource Characteristics
,”
Proc. Inst. Mech. Eng., Part M: J. Eng. Maritime Environ.
,
220
(
4
), pp.
185
194
.10.1243/14750902JEME50
18.
Mitcheson
,
P. D.
,
2010
, “
Energy Harvesting for Human Wearable and Implantable Bio-Sensors
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Buenos Aires, Aug. 31–Sept. 4, pp.
3432
3436
.10.1109/IEMBS.2010.5627952
19.
Kim
,
H. W.
,
Batra
,
A.
,
Priya
,
S.
,
Uchino
,
K.
,
Markley
,
D.
,
Newnham
,
R. E.
, and
Hofmann
,
H. F.
,
2004
, “
Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment
,”
Jpn. J. Appl. Phys.
,
43
(
9R)
, p.
6178
.10.1143/JJAP.43.6178
20.
Arrieta
,
A.
,
Hagedorn
,
P.
,
Erturk
,
A.
, and
Inman
,
D.
,
2010
, “
A Piezoelectric Bistable Plate for Nonlinear Broadband Energy Harvesting
,”
Appl. Phys. Lett.
,
97
(
10
), p.
104102
.10.1063/1.3487780
21.
Hajati
,
A.
, and
Kim
,
S. G.
,
2011
, “
Ultra-Wide Bandwidth Piezoelectric Energy Harvesting
,”
Appl. Phys. Lett.
,
99
(
8
), p.
083105
.10.1063/1.3629551
22.
Ferrari
,
M.
,
Ferrari
,
V.
,
Guizzetti
,
M.
,
Marioli
,
D.
, and
Taroni
,
A.
,
2008
, “
Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems
,”
Sens. Actuators A
,
142
(
1
), pp.
329
335
.10.1016/j.sna.2007.07.004
23.
Al-Ashtari
,
W.
,
Hunstig
,
M.
,
Hemsel
,
T.
, and
Sextro
,
W.
,
2013
, “
Enhanced Energy Harvesting Using Multiple Piezoelectric Elements: Theory and Experiments
,”
Sens. Actuators A
,
200
, pp.
138
146
.10.1016/j.sna.2013.01.008
24.
Castagnetti
,
D.
,
2011
, “
Fractal-Inspired Multifrequency Structures for Piezoelectric Harvesting of Ambient Kinetic Energy
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111005
.10.1115/1.4004984
25.
Castagnetti
,
D.
,
2012
, “
Experimental Modal Analysis of Fractal-Inspired Multi-Frequency Structures for Piezoelectric Energy Converters
,”
Smart Mater. Struct.
,
21
(
9
), p.
094009
.10.1088/0964-1726/21/9/094009
26.
Castagnetti
,
D.
,
2013
, “
A Wideband Fractal-Inspired Piezoelectric Energy Converter: Design, Simulation and Experimental Characterization
,”
Smart Mater. Struct.
,
22
(
9
), p.
094024
.10.1088/0964-1726/22/9/094024
27.
Platt
,
S. R.
,
Farritor
,
S.
, and
Haider
,
H.
,
2005
, “
On Low-Frequency Electric Power Generation With PZT Ceramics
,”
IEEE-ASME Trans. Mechatron.
,
10
(
2
), pp.
240
252
.10.1109/TMECH.2005.844704
28.
Abdelkefi
,
A.
,
Yan
,
Z.
, and
Hajj
,
M. R.
,
2013
, “
Modeling and Nonlinear Analysis of Piezoelectric Energy Harvesting From Transverse Galloping
,”
Smart Mater. Struct.
,
22
(
2
), p.
025016
.10.1088/0964-1726/22/2/025016
29.
Spadoni
,
A.
, and
Daraio
,
C.
,
2010
, “
Generation and Control of Sound Bullets With a Nonlinear Acoustic Lens
,”
Proc. Natl. Acad. Sci.
,
107
(
16
), pp.
7230
7234
.10.1073/pnas.1001514107
30.
Nesterenko
,
V. F.
,
1983
, “
Propagation of Nonlinear Compression Pulses in Granular Media
,”
ASME J. Appl. Mech. Tech. Phys.
,
24
(
5
), pp.
733
743
.10.1007/BF00905892
31.
Lazaridi
,
A.
, and
Nesterenko
,
V.
,
1985
, “
Observation of a New Type of Solitary Waves in a One-Dimensional Granular Medium
,”
ASME J. Appl. Mech. Tech. Phys.
,
26
(
3
), pp.
405
408
.10.1007/BF00910379
32.
Coste
,
C.
,
Falcon
,
E.
, and
Fauve
,
S.
,
1997
, “
Solitary Waves in a Chain of Beads Under Hertz Contact
,”
Phys. Rev. E
,
56
(
5
), p.
6104
.10.1103/PhysRevE.56.6104
33.
Chatterjee
,
A.
,
1999
, “
Asymptotic Solution for Solitary Waves in a Chain of Elastic Spheres
,”
Phys. Rev. E
,
59
(
5
), p.
5912
.10.1103/PhysRevE.59.5912
34.
Coste
,
C.
, and
Gilles
,
B.
,
1999
, “
On the Validity of Hertz Contact Law for Granular Material Acoustics
,”
Eur. Phys. J. B
,
7
(
1
), pp.
155
168
.10.1007/s100510050598
35.
Daraio
,
C.
, and
Nesterenko
,
V.
,
2006
, “
Strongly Nonlinear Wave Dynamics in a Chain of Polymer Coated Beads
,”
Phys. Rev. E
,
73
(
2
), p.
026612
.10.1103/PhysRevE.73.026612
36.
Ni
,
X.
,
Rizzo
,
P.
, and
Daraio
,
C.
,
2011
, “
Actuators for the Generation of Highly Nonlinear Solitary Waves
,”
Rev. Sci. Instrum.
,
82
(
3
), p.
034902
.10.1063/1.3556442
37.
Ni
,
X.
,
Rizzo
,
P.
,
Yang
,
J.
,
Katri
,
D.
, and
Daraio
,
C.
,
2012
, “
Monitoring the Hydration of Cement Using Highly Nonlinear Solitary Waves
,”
NDT E Int.
,
52
, pp.
76
85
.10.1016/j.ndteint.2012.05.003
38.
Daraio
,
C.
,
Nesterenko
, V
. F.
,
Herbold
,
E.
, and
Jin
,
S.
,
2006
, “
Tunability of Solitary Wave Properties in One-Dimensional Strongly Nonlinear Phononic Crystals
,”
Phys. Rev. E
,
73
(
2
), p.
026610
.10.1103/PhysRevE.73.026610
39.
Landau
,
L.
, and
Lifshitz
,
E.
,
1986
,
Theory of Elasticity (Course of Theoretical Physics)
,
Elsevier
,
Oxford, UK
.
40.
Li
,
K.
,
Rizzo
,
P.
, and
Ni
,
X.
,
2014
, “
Alternative Designs of Acoustic Lenses Based on Nonlinear Solitary Waves
,”
ASME J. Appl. Mech.
,
81
(
7
), p.
071011
.10.1115/1.4027327
41.
Wu
,
L. Y.
,
Chen
,
L. W.
, and
Liu
,
C. M.
,
2009
, “
Acoustic Energy Harvesting Using Resonant Cavity of a Sonic Crystal
,”
Appl. Phys. Lett.
,
95
(
1
), p.
013506
.10.1063/1.3176019
42.
Lv
,
H.
,
Tian
,
X.
,
Wang
,
M. Y.
, and
Li
,
D.
,
2013
, “
Vibration Energy Harvesting Using a Phononic Crystal With Point Defect States
,”
Appl. Phys. Lett.
,
102
(
3
), p.
034103
.10.1063/1.4788810
43.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.10.1115/1.2890402
44.
Siebert
,
W. M.
,
1986
,
Circuits, Signals, and Systems
,
MIT Press
, Cambridge, MA.
45.
Zhao
,
S.
, and
Erturk
,
A.
,
2014
, “
Deterministic and Band-Limited Stochastic Energy Harvesting From Uniaxial Excitation of a Multilayer Piezoelectric Stack
,”
Sens. Actuators A
,
214
, pp.
58
65
.10.1016/j.sna.2014.04.019
46.
Kong
,
N.
,
Ha
,
D. S.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2010
, “
Resistive Impedance Matching Circuit for Piezoelectric Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
13
), pp.
1293
1302
.10.1177/1045389X09357971
47.
Priya
,
S.
,
2007
, “
Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers
,”
J. Electroceram.
,
19
(
1
), pp.
167
184
.10.1007/s10832-007-9043-4
48.
Shu
,
Y. C.
,
2009
, “
Performance Evaluation of Vibration-Based Piezoelectric Energy Scavengers
,”
Energy Harvesting Technologies
,
Springer
, New York, pp.
79
105
.
49.
Wang
,
Y.
, and
Inman
,
D. J.
,
2014
, “
Energy Harvesting of Piezoelectric Stack Actuator From a Shock Event
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
011016
.10.1115/1.4025878
50.
Mallat
,
S.
,
1999
,
A Wavelet Tour of Signal Processing
,
Academic Press
, New York.
51.
Lanza di Scalea
,
F.
,
Rizzo
,
P.
, and
Marzani
,
A.
,
2003
, “
Propagation of Ultrasonic Guided Waves in Lap-Shear Adhesive Joints: Case of Incident Lamb Wave
,”
J. Acoust. Soc. Am.
,
115
(
1
), pp.
146
156
.10.1121/1.1630999
52.
Sale
,
M.
,
Rizzo
,
P.
, and
Marzani
,
A.
,
2011
, “
Semi-Analytical Formulation for the Guided Waves-Based Reconstruction of Elastic Moduli
,”
Mech. Syst. Signal Process.
,
25
(
6
), pp.
2241
2256
.10.1016/j.ymssp.2011.02.004
53.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Appendix C: Modal Analysis of a Uniform Cantilever With a Tip Mass
,”
Piezoelectric Energy Harvesting
, Wiley, New York, pp.
353
366
.10.1002/9781119991151.app3
You do not currently have access to this content.