This paper is focused on the study of a vibrating system forced by a rotating unbalance and coupled to a tuned mass damper (TMD). The analysis of the dynamic response of the entire system is used to define the parameters of such device in order to achieve optimal damping properties. The inertial forcing due to the rotating unbalance depends quadratically on the forcing frequency and it leads to optimal tuning parameters that differ from classical values obtained for pure harmonic forcing. Analytical results demonstrate that frequency and damping ratios, as a function of the mass parameter, should be higher than classical optimal parameters. The analytical study is carried out for the undamped primary system, and numerically investigated for the damped primary system. We show that, for practical applications, proper TMD tuning allows to achieve a reduction in the steady-state response of about 20% with respect to the response achieved with a classically tuned damper.

References

References
1.
Den Hartog
,
J.
,
1956
,
Mechanical Vibrations
,
4th ed.
,
McGraw-Hill
,
New York.
2.
Brock
,
J. E.
,
1946
, “
A Note on the Damped Vibration Absorber
,”
ASME J. Appl. Mech.
,
13
(
4
), p. A284.
3.
Zilletti
,
M.
,
Elliott
,
S. J.
, and
Rustighi
,
E.
,
2012
, “
Optimisation of Dynamic Vibration Absorbers to Minimise Kinetic Energy and Maximise Internal Power Dissipation
,”
J. Sound Vib.
,
331
(
18
), pp.
4093
4100
.10.1016/j.jsv.2012.04.023
4.
Asami
,
T.
,
Nishihara
,
O.
, and
Baz
,
A.
,
2002
, “
Analytical Solutions to H∞ and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
284
295
.10.1115/1.1456458
5.
Bisegna
,
P.
, and
Caruso
,
G.
,
2012
, “
Closed-Form Formulas for the Optimal Pole-Based Design of Tuned Mass Dampers
,”
J. Sound Vib.
,
331
(
10
), pp.
2291
2314
.10.1016/j.jsv.2012.01.005
6.
Krenk
,
S.
,
2005
, “
Frequency Analysis of the Tuned Mass Damper
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
936
942
.10.1115/1.2062867
7.
Tsai
,
H.-C.
, and
Lin
,
G.-C.
,
1994
, “
Explicit Formulae for Optimum Absorber Parameters for Force-Excited and Viscously Damped Systems
,”
J. Sound Vib.
,
176
(
5
), pp.
585
596
.10.1006/jsvi.1994.1400
8.
Ghosh
,
A.
, and
Basu
,
B.
,
2007
, “
A Closed-Form Optimal Tuning Criterion for TMD in Damped Structures
,”
Struct. Control Health Monit.
,
14
(
4
), pp.
681
692
.10.1002/stc.176
9.
Randall
,
S.
,
Halsted
,
D.
, III
, and
Taylor
,
D.
,
1981
, “
Optimum Vibration Absorbers for Linear Damped Systems
,”
ASME J. Mech. Des.
,
103
(
4
), pp.
908
913
.10.1115/1.3255005
10.
Liu
,
K.
, and
Coppola
,
G.
,
2010
, “
Optimal Design of Damped Dynamic Vibration Absorber for Damped Primary Systems
,”
Trans. Can. Soc. Mech. Eng.
,
34
(
1
), pp.
119
135
.
11.
Thompson
,
A.
,
1980
, “
Optimizing the Untuned Viscous Dynamic Vibration Absorber With Primary System Damping: A Frequency Locus Method
,”
J. Sound Vib.
,
73
(
3
), pp.
469
472
.10.1016/0022-460X(80)90528-3
12.
Pennestr
,
E.
,
1998
, “
An Application of Chebyshev's Min–Max Criterion to the Optimal Design of a Damped Dynamic Vibration Absorber
,”
J. Sound Vib.
,
217
(
4
), pp.
757
765
.10.1006/jsvi.1998.1805
13.
Brown
,
B.
, and
Singh
,
T.
,
2011
, “
Minimax Design of Vibration Absorbers for Linear Damped Systems
,”
J. Sound Vib.
,
330
(
11
), pp.
2437
2448
.10.1016/j.jsv.2010.12.002
14.
Jang
,
S.-J.
,
Brennan
,
M.
,
Rustighi
,
E.
, and
Jung
,
H.-J.
,
2012
, “
A Simple Method for Choosing the Parameters of a Two Degree-of-Freedom Tuned Vibration Absorber
,”
J. Sound Vib.
,
331
(
21
), pp.
4658
4667
.10.1016/j.jsv.2012.05.020
15.
Liu
,
K.
, and
Liu
,
J.
,
2005
, “
The Damped Dynamic Vibration Absorbers: Revisited and New Result
,”
J. Sound Vib.
,
284
(
35
), pp.
1181
1189
.10.1016/j.jsv.2004.08.002
16.
Krenk
,
S.
, and
Hogsberg
,
J.
,
2014
, “
Tuned Mass Absorber on a Flexible Structure
,”
J. Sound Vib.
,
333
(
6
), pp.
1577
1595
.10.1016/j.jsv.2013.11.029
17.
Ali
,
S.
, and
Adhikari
,
S.
,
2013
, “
Energy Harvesting Dynamic Vibration Absorbers
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041004
.10.1115/1.4007967
18.
Puksand
,
H.
,
1975
, “
Optimum Conditions for Dynamic Vibration Absorbers for Variable Speed Systems With Rotating or Reciprocating Unbalance
,”
Int. J. Mech. Eng. Educ.
,
3
(
2
), pp.
145
152
.
19.
Thompson
,
A. G.
,
1980
, “Optimizing the Untuned Viscous Dynamic Vibration Absorber With Primary System Damping: A Frequency Locus Method,”
J. Sound Vib.
,
73
(3), pp.
469
472
.10.1016/0022-460X(80)90528-3
20.
Argentini
,
T.
,
Belloli
,
M.
,
Robustelli
,
F.
,
Martegani
,
L.
, and
Fraternale
,
G.
,
2013
, “
Innovative Designs for the Suspension System of Horizontal-Axis Washing Machines: Secondary Suspensions and Tuned Mass Dampers
,”
ASME
Paper No. IMECE2013-64425.10.1115/IMECE2013-64425
You do not currently have access to this content.