This paper evaluates the vibration characteristics of thin/thick rotating cylindrical shells made of metallic and composite materials. A previous theory of the authors is extended here to include the effects of geometrical stiffness due to rotation. To this end, variable kinematic one-dimensional (1D) models obtained by applying the Carrera Unified Formulation (CUF) were used. The components of the displacement fields are x, z polynomials of arbitrary order N, making it possible to go beyond the rigid cross section assumptions of the classical beam theories. A significant contribution of this formulation consists in the possibility to include the in-plane cross-sectional deformations allowing the introduction of the in-plane initial stress effects, e.g., the effect of the geometrical stiffness. Equations of motions, including both Coriolis and in-plane initial stress contributions, were solved through the finite element method. Several analyses were carried out on both thin and thick cylinders made of either metallic or composite materials with different boundary conditions. The results are compared with analytical and numerical shell formulations and three-dimensional solutions available in the literature. Various laminate lay-up have been considered in the case of composites shells. Numerical evaluations of the effect of geometric stiffness are provided, demonstrating its importance in the analyses presented. The 1D models appear very effective to investigate the dynamics of spinning shells and, contrary to shell theories, they do not require any amendments with thick shell geometry. From the computational point of view, the present refined beam models are less expensive than the shell and solid counterparts.

References

1.
Bauer
,
H. F.
,
1980
, “
Vibration of a Rotating Uniform Beam, Part 1: Orientation in the Axis of Rotation
,”
J. Sound Vibration
,
72
(
2
), pp.
177
189
.10.1016/0022-460X(80)90651-3
2.
Curti
,
G.
,
Raffa
,
F. A.
, and
Vatta
,
F.
,
1991
, “
The Dynamic Stiffness Matrix Method in the Analysis of Rotating Systems
,”
Tribol. Trans.
,
34
(
1
), pp.
81
85
.10.1080/10402009108982012
3.
Curti
,
G.
,
Raffa
,
F. A.
, and
Vatta
,
F.
,
1992
, “
An Analytical Approach to the Dynamics of Rotating Shafts
,”
Meccanica
,
27
(
4
), pp.
285
292
.10.1007/BF00424368
4.
Bauchau
,
O. A.
,
1983
, “
Optimal Design of High Speed Rotating Graphite/Epoxy Shafts
,”
J. Compos. Mater.
,
17
(
3
), pp.
170
180
.10.1177/002199838301700205
5.
Chen
,
L. W.
, and
Peng
,
W. K.
,
1998
, “
The Stability Behavior of Rotating Composite Shafts Under Axial Compressive Loads
,”
Compos. Struct.
,
41
(
3–4
), pp.
253
263
.10.1016/S0263-8223(98)00022-1
6.
Song
,
O.
, and
Librescu
,
L.
,
1997
, “
Anisotropy and Structural Coupling on Vibration and Instability of Spinning Thin-Walled Beams
,”
J. Sound Vib.
,
204
(
3
), pp.
477
494
.10.1006/jsvi.1996.0947
7.
Song
,
O.
,
Librescu
,
L.
, and
Jeong
,
N.-H.
,
2000
, “
Vibration and Stability of Pretwisted Spinning Thin-Walled Composite Beams Featuring Bending-Bending Elastic Coupling
,”
J. Sound Vib.
,
237
(
3
), pp.
513
533
.10.1006/jsvi.2000.3100
8.
Bryan
,
G. H.
,
1890
, “
On the Beats in the Vibration of Revolving Cylinder or Bell
,”
Proc. Cambridge Philos. Soc.
,
7
(
3
), pp.
101
111
.
9.
Srinivasan
,
A. V.
, and
Lauterbach
,
G. F.
,
1971
, “
Traveling Waves in Rotating Cylindrical Shells
,”
J. Eng. Ind.
,
93
(
4
), pp.
1229
1232
.10.1115/1.3428067
10.
Padovan
,
J.
,
1973
, “
Natural Frequencies of Rotating Prestressed Cylinders
,”
J. Sound Vib.
,
31
(
4
), pp.
469
482
.10.1016/S0022-460X(73)80261-5
11.
Endo
,
M.
,
Katamura
,
K.
,
Sakata
,
M.
, and
Taniguchi
,
O.
,
1984
, “
Flexural Vibration of a Thin Rotating Ring
,”
J. Sound Vib.
,
92
(
2
), pp.
261
272
.10.1016/0022-460X(84)90560-1
12.
Saito
,
T.
, and
Endo
,
M.
,
1986
, “
Vibration of Finite Length Rotating Cylindrical Shells
,”
J. Sound Vib.
,
107
(
1
), pp.
17
28
.10.1016/0022-460X(86)90279-8
13.
Chen
,
Y.
,
Zhao
,
H. B.
,
Shen
,
Z. P.
,
Grieger
,
I.
, and
Kröplin
,
B.-H.
,
1993
, “
Vibrations of High Speed Rotating Shells With Calculations for Cylindrical Shells
,”
J. Sound Vib.
,
160
(
1
), pp.
137
160
.10.1006/jsvi.1993.1010
14.
Guo
,
D.
,
Zheng
,
Z.
, and
Chu
,
F.
,
2002
, “
Vibration Analysis of Spinning Cylindrical Shells by Finite Element Method
,”
Int. J. Solids Struct.
,
39
(
3
), pp.
725
739
.10.1016/S0020-7683(01)00031-2
15.
Guo
,
D.
,
Chu
,
F. L.
, and
Zheng
,
Z. C.
,
2001
, “
The Influence of Rotation on Vibration of a Thick Cylindrical Shell
,”
J. Sound Vib.
,
242
(
3
), pp.
487
505
.10.1006/jsvi.2000.3356
16.
Hua
,
L.
, and
Lam
,
K. Y.
,
1998
, “
Frequency Characteristics of a Thin Rotating Cylindrical Shell Using the Generalized Differential Quadrature Method
,”
Int. J. Mech. Sci.
,
40
(
5
), pp.
443
459
.10.1016/S0020-7403(97)00057-X
17.
Sun
,
S.
,
Chu
,
S.
, and
Cao
,
D.
,
2012
, “
Vibration Characteristics of Thin Rotating Cylindrical Shells With Various Boundary Conditions
,”
J. Sound Vib.
,
331
(
18
), pp.
4170
4186
.10.1016/j.jsv.2012.04.018
18.
Lam
,
K. Y.
, and
Loy
,
C. T.
,
1995
, “
Free Vibrations of a Rotating Multilayered Cylindrical Shell
,”
Int. J. Solids Struct.
,
32
(
5
), pp.
647
663
.10.1016/0020-7683(94)00143-K
19.
Lam
,
K. Y.
, and
Loy
,
C. T.
,
1995
, “
Analysis of Rotating Laminated Cylindrical Shells by Different Thin Shell Theories
,”
J. Sound Vib.
,
186
(
1
), pp.
23
35
.10.1006/jsvi.1995.0431
20.
Lam
,
K. Y.
, and
Loy
,
C. T.
,
1998
, “
Influence of Boundary Conditions for a Thin Laminated Rotating Cylindrical Shell
,”
Compos. Struct.
,
41
(
3–4
), pp.
215
228
.10.1016/S0263-8223(98)00012-9
21.
Civalek
,
Ö.
,
2007
, “
A Parametric Study of the Free Vibration Analysis of Rotating Laminated Cylindrical Shells Using the Method of Discrete Singular Convolution
,”
Thin-Walled Struct.
,
45
(
7
), pp.
692
698
.10.1016/j.tws.2007.05.004
22.
Ramezani
,
S.
, and
Ahmadian
,
M. T.
,
2009
, “
Free Vibration Analysis of Rotating Laminated Cylindrical Shells Under Different Boundary Conditions Using a Combination of the Layerwise Theory and Wave Propagation Approach
,”
Scientia Iranica Trans. B: Mech. Eng.
,
16
(
2
), pp.
168
176
.
23.
Liu
,
L.
,
Cao
,
D.
, and
Sun
,
S.
,
2013
, “
Vibration Analysis for Rotating Ring-Stiffened Cylindrical Shells With Arbitrary Boundary Conditions
,”
ASME J. Vib. Acoust.
,
135
(
6
), p.
061010
.10.1115/1.4024220
24.
Lee
,
Y. S.
, and
Kim
,
Y. W.
,
1998
, “
Vibration Analysis of Rotating Composite Cylindrical Shells With Orthogonal Stiffeners
,”
Comput. Struct.
,
69
(
2
), pp.
271
281
.10.1016/S0045-7949(97)00047-3
25.
Zhao
,
X.
,
Liew
,
K. M.
, and
Ng
,
T. Y.
,
2002
, “
Vibrations of Rotating Cross-Ply Laminated Circular Cylindrical Shells With Stringer and Ring Stiffeners
,”
Int. J. Solids Struct.
,
39
(
2
), pp.
529
545
.10.1016/S0020-7683(01)00194-9
26.
Hua
,
L.
,
Khin-Yong
,
L.
, and
Ng
,
T.-Y.
,
2005
,
Rotating Shell Dynamics
(Studies in Applied Mechanics),
Elsevier
, Oxford, UK.
27.
Carrera
,
E.
,
Giunta
,
G.
, and
Petrolo
,
M.
,
2011
,
Beam Structures: Classical and Advanced Theories
,
Wiley
, West Sussex, UK.
28.
Carrera
,
E.
,
Zappino
,
E.
, and
Filippi
,
M.
,
2013
, “
Free Vibration Analysis of Thin-Walled Cylinders Reinforced With Longitudinal and Transversal Stiffeners
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011019
.10.1115/1.4007559
29.
Carrera
,
E.
,
Filippi
,
M.
, and
Zappino
,
E.
,
2013
, “
Laminated Beam Analysis by Polynomial, Trigonometric, Exponential and Zig-Zag Theories
,”
Eur. J. Mech. A/Solids
,
41
, pp.
58
69
.10.1016/j.euromechsol.2013.02.006
30.
Carrera
,
E.
,
Filippi
,
M.
, and
Zappino
,
E.
,
2014
, “
Free Vibration Analysis of Laminated Beam by Polynomial, Trigonometric, Exponential and Zig-Zag Theories
,”
J. Compos. Mater.
,
48
(
19
), pp.
2299
2316
.10.1177/0021998313497775
31.
Carrera
,
E.
,
Filippi
,
M.
, and
Zappino
,
E.
,
2013
, “
Analysis of Rotor Dynamic by One-Dimensional Variable Kinematic Theories
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
092501
.10.1115/1.4024381
32.
Carrera
,
E.
, and
Filippi
,
M.
,
2014
,
Variable Kinematic One-Dimensional Finite Elements for the Analysis of Rotors Made of Composite Materials
,”
ASME J. Gas Turbines Power
,
136
(
9
), p.
092501
.10.1115/1.4027192
33.
Viola, E., Tornabene, F., and N. Fantuzzi, N., “DiQuMASPAB (Differential Quadrature for Mechanics of Anisotropic Shells, Plates, Arches and Beams),” DICAM Department, Alma Mater Studiorum, University of Bologna, Bologna, Italy,
http://software.dicam.unibo.it/diqumaspab-project
34.
Wang
,
H.
,
Williams
,
K.
, and
Guan
,
W.
,
1998
, “
A Vibrational Mode Analysis of Free Finite-Length Thick Cylinders Using the Finite Element Method
,”
ASME J. Vib. Acoust.
,
120
(
2
), pp.
371
377
.10.1115/1.2893840
You do not currently have access to this content.