This paper develops and validates an aero-electromechanical model which captures the nonlinear response behavior of a piezoelectric cantilever-type energy harvester under combined galloping and base excitations. The harvester consists of a thin piezoelectric cantilever beam clamped at one end and rigidly attached to a bluff body at the other end. In addition to the vibratory base excitations, the beam is also subjected to aerodynamic forces resulting from the separation of the incoming airflow on both sides of the bluff body which gives rise to limit-cycle oscillations when the airflow velocity exceeds a critical value. A nonlinear electromechanical distributed-parameter model of the harvester under the combined excitations is derived using the energy approach and by adopting the nonlinear Euler–Bernoulli beam theory, linear constitutive relations for the piezoelectric transduction, and the quasi-steady assumption for the aerodynamic loading. The resulting partial differential equations of motion are discretized and a reduced-order model is obtained. The mathematical model is validated by conducting a series of experiments at different wind speeds and base excitation amplitudes for excitation frequencies around the primary resonance of the harvester. Results from the model and experiment are presented to characterize the response behavior under the combined loading.

References

References
1.
Roundy
,
S.
, and
Wright
,
P.
,
2004
, “
A Piezoelectric Vibration Based Generator for Wireless Electronics
,”
Smart Mater. Struct.
,
13
(
5
), pp.
1131
1142
.10.1088/0964-1726/13/5/018
2.
Inman
,
D.
, and
Grisso
,
B.
,
2006
, “
Towards Autonomous Sensing
,”
Proc. SPIE
,
6174
, pp.
248
254
.10.1117/12.658765
3.
Cook-Chennault
,
K.
,
Thambi
,
N.
, and
Sastry
,
A.
,
2008
, “
Powering Mems Portable Devices—A Review of Non-Regenerative and Regenerative Power Supply Systems With Special Emphasis on Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
17
(
4
), p.
043001
.10.1088/0964-1726/17/4/043001
4.
Wang
,
L.
, and
Yuan
,
F.
,
2008
, “
Vibration Energy Harvesting by Magnetostrictive Material
,”
Smart Mater. Struct.
,
17
(
4
), p.
045009
.10.1088/0964-1726/17/4/045009
5.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D.
,
2009
, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
25
), p.
254102
.10.1063/1.3159815
6.
Clair
,
D. S.
,
Bibo
,
A.
,
Sennakesavababu
,
V.
,
Daqaq
,
M.
, and
Li
,
G.
,
2010
, “
A Scalable Concept for Micropower Generation Using Flow-Induced Self-Excited Oscillations
,”
Appl. Phys. Lett.
,
96
(
14
), p.
144103
.10.1063/1.3385780
7.
Elvin
,
N.
, and
Elvin
,
A.
,
2011
, “
An Experimentally Validated Electromagnetic Energy Harvester
,”
J. Sound Vib.
,
330
(
10
), pp.
2314
2324
.10.1016/j.jsv.2010.11.024
8.
Karami
,
M. A.
, and
Inman
,
D. J.
,
2012
, “
Powering Pacemakers From Heartbeat Vibrations Using Linear and Nonlinear Energy Harvesters
,”
Appl. Phys. Lett.
,
100
(
4
), p.
042901
.10.1063/1.3679102
9.
Baz
,
A.
,
Aldraihem
,
O.
, and
Aladwani
,
A.
,
2014
, “
Piezoelectric Vibration Energy Harvesting From a Structure Coupled With an Acoustic Cavity and a Dynamic Magnifier
,”
ASME J. Vib. Acoust.
(in press).10.1115/1.4029359
10.
Yang
,
Z.
, and
Yang
,
J.
,
2009
, “
Connected Vibrating Piezoelectric Bimorph Beams as a Wide-Band Piezoelectric Power Harvester
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
569
574
.10.1177/1045389X08100042
11.
Mann
,
B.
, and
Sims
,
N.
,
2009
, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
(
1
), pp.
515
530
.10.1016/j.jsv.2008.06.011
12.
Renno
,
J.
,
Daqaq
,
M.
, and
Inman
,
D.
,
2009
, “
On the Optimal Energy Harvesting From a Vibration Source
,”
J. Sound Vib.
,
320
(
1
), pp.
386
405
.10.1016/j.jsv.2008.07.029
13.
Arrieta
,
A.
,
Hagedorn
,
P.
,
Erturk
,
A.
, and
Inman
,
D.
,
2010
, “
A Piezoelectric Bistable Plate for Nonlinear Broadband Energy Harvesting
,”
Appl. Phys. Lett.
,
97
(
10
), p.
104102
.10.1063/1.3487780
14.
Masana
,
R.
, and
Daqaq
,
M.
,
2011
, “
Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011007
.10.1115/1.4002786
15.
Amin Karami
,
M.
, and
Inman
,
D. J.
,
2012
, “
Parametric Study of Zigzag Microstructure for Vibrational Energy Harvesting
,”
J. Microelectromech. Syst.
,
21
(
1
), pp.
145
160
.10.1109/JMEMS.2011.2171321
16.
Tang
,
L.
, and
Yang
,
Y.
,
2012
, “
A Nonlinear Piezoelectric Energy Harvester With Magnetic Oscillator
,”
Appl. Phys. Lett.
,
101
(
9
), p.
094102
.10.1063/1.4748794
17.
Zhou
,
S.
,
Cao
,
J.
,
Erturk
,
A.
, and
Lin
,
J.
,
2013
, “
Enhanced Broadband Piezoelectric Energy Harvesting Using Rotatable Magnets
,”
Appl. Phys. Lett.
,
102
(
17
), p.
173901
.10.1063/1.4803445
18.
Shafer
,
M. W.
, and
Garcia
,
E.
,
2013
, “
The Power and Efficiency Limits of Piezoelectric Energy Harvesting
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021007
.10.1115/1.4025996
19.
Akayd in
,
H.
,
Elvin
,
N.
, and
Andreopoulos
,
Y.
,
2010
, “
Wake of a Cylinder: A Paradigm for Energy Harvesting With Piezoelectric Materials
,”
Exp. Fluids
,
49
(
1
), pp.
291
304
.10.1007/s00348-010-0871-7
20.
Jung
,
H.
, and
Lee
,
S.
,
2011
, “
The Experimental Validation of a New Energy Harvesting System Based on the Wake Galloping Phenomenon
,”
Smart Mater. Struct.
,
20
(
5
), p.
055022
.10.1088/0964-1726/20/5/055022
21.
Mehmood
,
A.
,
Abdelkefi
,
A.
,
Hajj
,
M.
,
Nayfeh
,
A.
,
Akhtar
,
I.
, and
Nuhait
,
A.
,
2013
, “
Piezoelectric Energy Harvesting From Vortex-Induced Vibrations of Circular Cylinder
,”
J. Sound Vib.
,
332
(
19
), pp.
4656
4667
.10.1016/j.jsv.2013.03.033
22.
Tang
,
L.
,
Païdoussis
,
M.
, and
Jiang
,
J.
,
2009
, “
Cantilevered Flexible Plates in Axial Flow: Energy Transfer and the Concept of Flutter-Mill
,”
J. Sound Vib.
,
326
(
1
), pp.
263
276
.10.1016/j.jsv.2009.04.041
23.
Erturk
,
A.
,
Vieira
,
W.
,
Marqui
,
C. D.
, and
Inman
,
D.
,
2010
, “
On the Energy Harvesting Potential of Piezoaeroelastic Systems
,”
Appl. Phys. Lett.
,
96
(
18
), p.
184103
.10.1063/1.3427405
24.
Marqui
,
C. D.
,
Erturk
,
A.
, and
Inman
,
D.
,
2010
, “
Piezoaeroelastic Modeling and Analysis of a Generator Wing With Continuous and Segmented Electrodes
,”
J. Intell. Mater. Syst. Struct.
,
21
(
10
), pp.
983
993
.10.1177/1045389X10372261
25.
Bryant
,
M.
, and
Garcia
,
E.
,
2011
, “
Modeling and Testing of a Novel Aeroelastic Flutter Energy Harvester
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011010
.10.1115/1.4002788
26.
Abdelkefi
,
A.
,
Nayfeh
,
A.
, and
Hajj
,
M.
,
2012
, “
Modeling and Analysis of Piezoaeroelastic Energy Harvesters
,”
Nonlinear Dyn.
,
67
(
2
), pp.
925
939
.10.1007/s11071-011-0035-1
27.
Dias
,
J.
,
De Marqui
,
C.
, Jr.
, and
Erturk
,
A.
,
2013
, “
Hybrid Piezoelectric-Inductive Flow Energy Harvesting and Dimensionless Electroaeroelastic Analysis for Scaling
,”
Appl. Phys. Lett.
,
102
(
4
), p.
044101
.10.1063/1.4789433
28.
Barrero-Gil
,
A.
,
Alonso
,
G.
, and
Sanz-Andres
,
A.
,
2010
, “
Energy Harvesting From Transverse Galloping
,”
J. Sound Vib.
,
329
(
14
), pp.
2873
2883
.10.1016/j.jsv.2010.01.028
29.
Kwon
,
S.
,
2010
, “
A T-Shaped Piezoelectric Cantilever for Fluid Energy Harvesting
,”
Appl. Phys. Lett.
,
97
(
16
), p.
164102
.10.1063/1.3503609
30.
Sirohi
,
J.
, and
Mahadik
,
R.
,
2011
, “
Piezoelectric Wind Energy Harvester for Low-Power Sensors
,”
J. Intell. Mater. Syst. Struct.
,
22
(
18
), pp.
2215
2228
.10.1177/1045389X11428366
31.
Akaydin
,
H.
,
Elvin
,
N.
, and
Andreopoulos
,
Y.
,
2012
, “
The Performance of a Self-Excited Fluidic Energy Harvester
,”
Smart Mater. Struct.
,
21
(
2
), p.
025007
.10.1088/0964-1726/21/2/025007
32.
Abdelkefi
,
A.
,
Hajj
,
M.
, and
Nayfeh
,
A.
,
2013
, “
Piezoelectric Energy Harvesting From Transverse Galloping of Bluff Bodies
,”
Smart Mater. Struct.
,
22
(
1
), p.
015014
.10.1088/0964-1726/22/1/015014
33.
Yang
,
Y.
,
Zhao
,
L.
, and
Tang
,
L.
,
2013
, “
Comparative Study of Tip Cross-Sections for Efficient Galloping Energy Harvesting
,”
Appl. Phys. Lett.
,
102
(
6
), p.
064105
.10.1063/1.4792737
34.
Mokni
,
L.
,
Kirrou
,
I.
, and
Belhaq
,
M.
,
2014
, “
Galloping of a Wind-Excited Tower Under Internal Parametric Damping
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
024503
.10.1115/1.4026505
35.
Abdelkefi
,
A.
,
Scanlon
,
J.
,
McDowell
,
E.
, and
Hajj
,
M.
,
2013
, “
Performance Enhancement of Piezoelectric Energy Harvesters From Wake Galloping
,”
Appl. Phys. Lett.
,
103
(
3
), p.
033903
.10.1063/1.4816075
36.
Bibo
,
A.
, and
Daqaq
,
M.
,
2013
, “
Investigation of Concurrent Energy Harvesting From Ambient Vibrations and Wind Using a Single Piezoelectric Generator
,”
Appl. Phys. Lett.
,
102
(
24
), p.
243904
.10.1063/1.4811408
37.
Bibo
,
A.
, and
Daqaq
,
M.
,
2013
, “
Energy Harvesting Under Combined Aerodynamic and Base Excitations
,”
J. Sound Vib.
,
332
(
20
), pp.
5086
5102
.10.1016/j.jsv.2013.04.009
38.
Yan
,
Z.
,
Abdelkefi
,
A.
, and
Hajj
,
M. R.
,
2014
, “
Piezoelectric Energy Harvesting From Hybrid Vibrations
,”
Smart Mater. Struct.
,
23
(
2
), p.
025026
.10.1088/0964-1726/23/2/025026
39.
Dai
,
H.
,
Abdelkefi
,
A.
, and
Wang
,
L.
,
2014
, “
Piezoelectric Energy Harvesting From Concurrent Vortex-Induced Vibrations and Base Excitations
,”
Nonlinear Dyn.
,
77
(
3
), pp.
967
981
.10.1007/s11071-014-1355-8
40.
Bryant
,
M.
,
Wolff
,
E.
, and
Garcia
,
E.
,
2011
, “
Aeroelastic Flutter Energy Harvester Design: The Sensitivity of the Driving Instability to System Parameters
,”
Smart Mater. Struct.
,
20
(
12
), p.
125017
.10.1088/0964-1726/20/12/125017
41.
Nayfeh
,
A.
, and
Pai
,
P.
,
2008
,
Linear and Nonlinear Structural Mechanics
,
Wiley
,
Hoboken, NJ
.
42.
Parkinson
,
G.
, and
Brooks
,
N.
,
1961
, “
On the Aeroelastic Instability of Bluff Cylinders
,”
ASME J. Appl. Mech.
,
28
(
2
), pp.
252
258
.10.1115/1.3641663
43.
Tang
,
D.
,
Yamamoto
,
H.
, and
Dowell
,
E.
,
2003
, “
Flutter and Limit Cycle Oscillations of Two-Dimensional Panels in Three-Dimensional Axial Flow
,”
J. Fluids Struct.
,
17
(
2
), pp.
225
242
.10.1016/S0889-9746(02)00121-4
44.
Tang
,
L.
, and
Païdoussis
,
M.
,
2007
, “
On the Instability and the Post-Critical Behaviour of Two-Dimensional Cantilevered Flexible Plates in Axial Flow
,”
J. Sound Vib.
,
305
(
1
), pp.
97
115
.10.1016/j.jsv.2007.03.042
You do not currently have access to this content.