Residual vibrations affect machines at the end of commanded motion and can cause a lengthening of the work cycle. The proposed work addresses to the reduction of this undesired phenomenon with an optimization approach based on the Fourier transformation of the motion profile suppressing a band of exciting frequencies around the natural frequencies of the system. Experimental results confirmed a significant improvement, in terms of residual vibrations, with respect to the state of the art of motion profiles specifically designed for residual vibrations reduction.

References

References
1.
Singer
,
N. C.
, and
Seering
,
W. P.
,
1990
, “
Preshaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
1
), pp.
76
82
.10.1115/1.2894142
2.
Singhose
,
W.
,
2009
, “
Command Shaping for Flexible Systems: A Review of the First 50 Years
,”
Int. J. Precis. Eng. Manuf.
,
10
(
4
), pp.
153
168
.10.1007/s12541-009-0084-2
3.
Kim
,
D.
, and
Singhose
,
W.
,
2010
, “
Performance Studies of Human Operators Driving Double-Pendulum Bridge Cranes
,”
Control Eng. Pract.
,
18
(
6
), pp.
567
576
.10.1016/j.conengprac.2010.01.011
4.
Singhose
,
W.
, and
Potter
,
J. J.
,
2014
, “
Reduced-Modification Input Shapers for Manually Controlled Systems With Flexibility
,”
American Control Conference
(
ACC
), Portland, OR, June 4–6, pp.
2815
2820
.10.1109/ACC.2014.6858914
5.
Schlotter
,
M.
, and
Keogh
,
P. S.
,
2008
, “
The Vibration Control of Speed-Dependent Flexible Rotor/Magnetic Bearing Systems Using Linear Matrix Inequality Gain-Scheduled H∞ Design
,”
Proc. Inst. Mech. Eng., Part I
,
222
(
2
), pp.
97
107
.10.1243/09596518jsce445
6.
Piazzi
,
A.
, and
Visioli
,
A.
,
2000
, “
Minimum-Time System-Inversion-Based Motion Planning for Residual Vibration Reduction
,”
IEEE/ASME Trans. Mechatronics
,
5
(
1
), pp.
12
22
.10.1109/3516.828585
7.
Singhose
,
W.
,
Seering
,
W.
, and
Singer
,
N.
,
1994
, “
Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
654
659
.10.1115/1.2919428
8.
Singhose
,
W. E.
,
Porter
,
L. J.
,
Tuttle
,
T. D.
, and
Singer
,
N. C.
,
1997
, “
Vibration Reduction Using Multi-Hump Input Shapers
,”
ASME J. Dyn. Syst. Meas. Control
,
119
(
2
), pp.
320
326
.10.1115/1.2801257
9.
Consolini
,
L.
, and
Piazzi
,
A.
,
2009
, “
Generalized Bang–Bang Control for Feed Forward Constrained Regulation
,”
Automatica
,
45
(
10
), pp.
2234
2243
.10.1016/j.automatica.2009.06.030
10.
Aspinwall
,
D. M.
,
1980
, “
Acceleration Profiles for Minimizing Residual Response
,”
ASME J. Dyn. Syst. Meas. Control
,
102
(
1
), pp.
3
6
.10.1115/1.3140620
11.
Meckl
,
P.
, and
Seering
,
W.
,
1985
, “
Active Damping in a 3-Axis Robotic Manipulator
,”
ASME J. Vib. Acoust.
,
107
(
1
), pp.
38
46
.10.1115/1.3274714
12.
Asensio
,
J.
,
Chen
,
W. J.
, and
Tomizuka
,
M.
,
2014
, “
Feedforward Input Generation Based on Neural Network Prediction in Multi-Joint Robots
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
3
), p.
031002
.10.1115/1.4025986
13.
Flocker
,
F. W.
,
2007
, “
Controlling the Frequency Content of Inertia Forces in Dwelling Cam-Follower Systems
,”
ASME J. Mech. Des.
,
129
(
5
), pp.
546
552
.10.1115/1.2712222
14.
Tsaprounis
,
C. J.
, and
Aspragathos
,
N. A.
,
2001
, “
A Linear Differential Formulation of Friction Forces for Adaptive Estimator Algorithms
,”
Robotica
,
19
(
4
), pp.
407
421
.10.1017/S0263574701003320
15.
Oh
,
H.
,
Lee
,
U.
, and
Park
,
D. H.
,
2004
, “
Dynamics of an Axially Moving Bernoulli–Euler Beam: Spectral Element Modeling and Analysis
,”
KSME Int. J.
,
18
(
3
), pp.
395
406
.http://link.springer.com/article/10.1007%2FBF02996105
16.
Bhat
,
S. P.
, and
Miu
,
D. K.
,
1990
, “
Precise Point-to-Point Positioning Control of Flexible Structures
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
4
), pp.
667
674
.10.1115/1.2896193
17.
Olsson
,
M.
,
1985
, “
Finite-Element, Modal Coordinate Analysis of Structures Subjected to Moving Loads
,”
J. Sound Vib.
,
99
(
1
), pp.
1
12
.10.1016/0022-460X(85)90440-7
18.
Hanachi
,
S.
, and
Freudenstein
,
F.
,
1986
, “
The Development of a Predictive Model for the Optimization of High-Speed Cam-Follower Systems With Coulomb Damping Internal-Friction and Elastic and Fluidic Elements
,”
ASME J. Mech. Des.
,
108
(
4
), pp.
506
515
.10.1115/1.3258762
19.
Lopes
,
D. S.
,
Silva
,
M. T.
, and
Ambrosio
,
J. A.
,
2013
, “
Tangent Vectors to a 3-D Surface Normal: A Geometric Tool to Find Orthogonal Vectors Based on the Householder Transformation
,”
Comput. Aided Des.
,
45
(
3
), pp.
683
694
.10.1016/j.cad.2012.11.003
20.
Forbes
,
A. B.
, and
Sousa
,
J. A.
,
2011
, “
The GUM, Bayesian Inference and the Observation and Measurement Equations
,”
Measurement
,
44
(
8
), pp.
1422
1435
.10.1016/j.measurement.2011.05.007
21.
Antonini
,
M.
,
Borboni
,
A.
,
Bussola
,
R.
, and
Faglia
,
R.
,
2006
, “
A Genetic Algorithm as Support in the Movement Optimisation of a Redundant Serial Robot
,”
ASME
Paper No. ESDA2006-95123.10.1115/ESDA2006-95123
22.
Freudenstein
,
F.
,
1960
, “
On the Dynamics of High Speed Cam Profiles
,”
Int. J. Mech. Sci.
,
1
(
4
), pp.
342
349
.10.1016/0020-7403(60)90053-9
23.
Gutman
,
A. S.
,
1961
, “
To Avoid Vibration, Try This New Cam Profile
,”
Prod. Eng.
,
32
(
44
), pp.
42
48
.
24.
Berzak
,
N.
,
1982
, “
Optimization of Cam-Follower Systems With Kinematic and Dynamic Constraints
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
29
38
.10.1115/1.3256319
25.
Singhose
,
W. E.
,
Seering
,
W. P.
, and
Singer
,
N. C.
,
1996
, “
Input Shaping for Vibration Reduction With Specified Insensitivity to Modeling Errors
,” Japan/USA Symposium of Flexible Automation, Boston, MA, July 7–10, pp.
307
313
.
You do not currently have access to this content.