Two-layer piezoelectric vibration energy harvesters using convergent and divergent tapered structures have been developed for broadband power output. The harvesters consist of a base cantilevered beam, which is attached to an upper beam by a spacer to develop a two-layer configuration. Two masses are attached to each layer to tune the resonance frequencies of each harvester and one of these masses also serves as the spacer. By varying the positions of the masses, the convergent and divergent tapered harvesters can generate close resonance frequencies and considerable power output in the first two modes. A broadband harvester design strategy is introduced based on a modal approach, which determines the modal performance using mass ratio and modal electromechanical coupling coefficient (EMCC). The required modal parameters are derived using the finite element method. Mass ratio represents the influence of the modal mechanical behavior on the power density directly. Since the dominant mode causes the remaining modes to have smaller mass ratios, smaller EMCC, and poor performance, the design strategy involves the selection of the harvester configurations with close resonances and favorable values of mass ratio initially, and deriving the EMCC and power density of those selected configurations.

References

References
1.
Hudak
,
N. S.
, and
Amatucci
,
G. G.
,
2008
, “
Small-Scale Energy Harvesting Through Thermoelectric, Vibration, and Radio Frequency Power Conversion
,”
J. Appl. Phys.
,
103
(
10
), p.
101301
.10.1063/1.2918987
2.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003-2006)
,”
Smart Mater. Struct.
,
16
(
3
), p.
R1
, 2007.10.1088/0964-1726/16/3/R01
3.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1867
1897
.10.1177/1045389X10390249
4.
Ferrari
,
M.
,
Ferrari
,
V.
,
Guizzetti
,
M.
,
Marioli
,
D.
, and
Taroni
,
A.
,
2008
, “
Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems
,”
Sens. Actuators, A
,
142
(
1
), pp.
329
335
.10.1016/j.sna.2007.07.004
5.
Qi
,
S.
,
Shuttleworth
,
R.
,
Oyadiji
,
S. O.
, and
Wright
,
J.
,
2010
, “
Design of a Multiresonant Beam for Broadband Piezoelectric Energy Harvesting
,”
Smart Mater. Struct.
,
19
(
9
), p.
094009
.10.1088/0964-1726/19/9/094009
6.
Wang
,
W.
,
Yang
,
T.
,
Chen
,
X.
, and
Yao
,
X.
,
2012
, “
Vibration Energy Harvesting Using a Piezoelectric Circular Diaphragm Array
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
59
(
9
), pp.
2022
2026
.10.1109/TUFFC.2012.2422
7.
Lumentut
,
M. F.
,
Francis
,
L. A.
, and
Howard
,
I. M.
,
2012
, “
Analytical Techniques for Broadband Multielectromechanical Piezoelectric Bimorph Beams With Multifrequency Power Harvesting
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
59
(
11
), pp.
2555
2568
.10.1109/TUFFC.2012.2489
8.
Zhou
,
W.
,
Penamalli
,
G. R.
, and
Zuo
,
L.
,
2012
, “
An Efficient Vibration Energy Harvester With a Multi-Mode Dynamic Magnifier
,”
Smart Mater. Struct.
,
21
(
1
), p.
015014
.10.1088/0964-1726/21/1/015014
9.
Ou
,
Q.
,
Chen
,
X.
,
Gutschmidt
,
S.
,
Wood
,
A.
,
Leigh
,
N.
, and
Arrieta
,
A. F.
,
2012
, “
An Experimentally Validated Double-Mass Piezoelectric Cantilever Model for Broadband Vibration–Based Energy Harvesting
,”
Intell. Mater. Syst. Struct.
,
23
(
2
), pp.
117
126
.10.1177/1045389X11431746
10.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
,
2009
, “
Modeling of Piezoelectric Energy Harvesting From an L-Shaped Beam Mass Structure With an Application to UAVs
,”
Intell. Mater. Syst. Struct.
,
20
(5), pp.
529
544
.10.1177/1045389X08098096
11.
Xiong
,
X.
, and
Oyadiji
,
S. O.
,
2014
, “
Optimal Design of Two-Layer Vibration Energy Harvesters Using a Modal Approach
,”
Smart Mater. Structures
,
23
(
3
), p.
035005
.10.1088/0964-1726/23/3/035005
12.
Roundy
,
S.
,
Leland
,
E. S.
,
Baker
,
J.
,
Carleton
,
E.
,
Reilly
,
E.
,
Lai
,
E.
,
Otis
,
B.
,
Rabaey
,
J. M.
,
Wright
,
P. K.
, and
Sundararajan
,
V.
,
2005
, “
Improving Power Output for Vibration-Based Energy Scavengers
,”
IEEE Pervasive Comput.
,
4
(
1
), pp.
28
36
.10.1109/MPRV.2005.14
13.
Mehraeen
,
S.
,
Jagannathan
,
S.
, and
Corzine
,
K. A.
,
2010
, “
Energy Harvesting From Vibration With Alternate Scavenging Circuitry and Tapered Cantilever Beam
,”
IEEE Trans. Ind. Electron.
,
57
(
3
), pp.
820
830
.10.1109/TIE.2009.2037652
14.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.10.1115/1.2890402
15.
Guyomar
,
D.
,
Sebald
,
G.
,
Pruvost
,
S.
,
Lallart
,
M.
,
Khodayari
,
A.
, and
Richard
,
C.
,
2009
, “
Energy Harvesting From Ambient Vibrations and Heat
,”
Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
609
624
.10.1177/1045389X08096888
16.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters
,”
Intell. Mater. Syst. Struct.
,
19
(
11
), pp.
1311
1325
.10.1177/1045389X07085639
17.
Xiong
,
X.
, and
Oyadiji
,
S. O.
,
2014
, “
Modal Electromechanical Optimization of Cantilevered Piezoelectric Vibration Energy Harvesters by Geometric Variation
,”
Intell. Mater. Syst. Struct.
,
25
(
10
), pp.
1177
1195
.10.1177/1045389X13502872
18.
SIMULIA Corp.
,
2010
, “
Abaqus Theory Manual in ABAQUS 6.10 Documentations
,” Dassault Systèmes, Waltham, MA, www.simulia.com
You do not currently have access to this content.