A transformation is employed to obtain expressions for the decay of the displacement, the velocity, and the energy for various forms of nonlinear oscillators. The equation of motion of the nonlinear oscillator is transformed into a first-order decay term plus an energy term, where this transformed equation can be decoupled into a set of two analytically solvable equations. The decoupled equations can be solved for the decay formulas. Unlike other methods in the literature, this transformation method is directly applied to the equation of motion, and an approximate solution is not required to be known a priori. The method is first applied to a purely nonlinear oscillator with a non-negative, real-power restoring force to obtain the decay formulas. These decay formulas are found to behave similarly to those of a linear oscillator. In addition, these formulas are employed to obtain an accurate formula for the frequency decay. Based on this result, the exact frequency formula given in the literature for this oscillator is generalized by substituting the initial values of the envelopes for the actual initial conditions. By this modification, the formulas for the initial and time-varying frequencies become valid for any combination of the initial displacement and velocity. Furthermore, a generalized nonlinear oscillator for which the transformation is always valid is introduced. From this generalized oscillator, the proposed transformation is applied to analyze various types of oscillators.

References

References
1.
Nayfeh
,
A. H.
,
1973
,
Perturbation Methods
,
Wiley
,
New York
.
2.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
3.
Luo
,
A. C. J.
, and
Huang
,
J.
,
2011
, “
Approximate Solutions of Periodic Motions in Nonlinear Systems Via a Generalized Harmonic Balance
,”
J. Vib. Control
,
18
(
11
), pp.
1661
1674
.10.1177/1077546311421053
4.
Beléndez
,
A.
,
Hernández
,
A.
,
Márquez
,
A.
,
Beléndez
,
T.
, and
Neipp
,
C.
,
2006
, “
Analytical Approximations for the Period of a Nonlinear Pendulum
,”
Eur. J. Phys.
,
27
(
3
), pp.
539
551
.10.1088/0143-0807/27/3/008
5.
Beléndez
,
A.
,
Hernández
,
A.
,
Beléndez
,
T.
,
Álvarez
,
M. L.
,
Gallego
,
S.
,
Ortuño
,
M.
, and
Neipp
,
C.
,
2007
, “
Application of the Harmonic Balance Method to a Nonlinear Oscillator Typified by a Mass Attached to a Stretched Wire
,”
J. Sound Vib.
,
302
(
4–5
), pp.
1018
1029
.10.1016/j.jsv.2006.12.011
6.
Sun
,
W. P.
,
Wu
,
B. S.
, and
Lim
,
C. W.
,
2007
, “
Approximate Analytical Solutions for Oscillation of a Mass Attached to a Stretched Elastic Wire
,”
J. Sound Vib.
,
300
(
3
), pp.
1042
1047
.10.1016/j.jsv.2006.08.025
7.
Durmaz
,
S.
,
Demirbağ
,
S. A.
, and
Kaya
,
M. O.
,
2011
, “
Approximate Solutions for Nonlinear Oscillation of a Mass Attached to a Stretched Elastic Wire
,”
Comput. Math. Appl.
,
61
(
3
), pp.
578
585
.10.1016/j.camwa.2010.12.003
8.
Mickens
,
R. E.
,
1984
, “
Comments on the Method of Harmonic Balance
,”
J. Sound Vib.
,
94
(
3
), pp.
456
460
.10.1016/S0022-460X(84)80025-5
9.
Beléndez
,
A.
,
Beléndez
,
T.
,
Márquez
,
A.
, and
Neipp
,
C.
,
2008
, “
Application of He's Homotopy Perturbation Method to Conservative Truly Nonlinear Oscillators
,”
Chaos, Solitons Fractals
,
37
(
3
), pp.
770
780
.10.1016/j.chaos.2006.09.070
10.
Cveticanin
,
L.
,
2006
, “
Homotopy-Perturbation Method for Pure Nonlinear Differential Equation
,”
Chaos, Solitons Fractals
,
30
(
5
), pp.
1221
1230
.10.1016/j.chaos.2005.08.180
11.
Beléndez
,
A.
,
Beléndez
,
T.
,
Neipp
,
C.
,
Hernández
,
A.
, and
Álvarez
,
M. L.
,
2009
, “
Approximate Solutions of a Nonlinear Oscillator Typified as a Mass Attached to a Stretched Elastic Wire by the Homotopy Perturbation Method
,”
Chaos, Solitons Fractals
,
39
(
2
), pp.
746
764
.10.1016/j.chaos.2007.01.089
12.
Cveticanin
,
L.
,
1998
, “
Analytical Methods for Solving Strongly Non-Linear Differential Equations
,”
J. Sound Vib.
,
214
(
2
), pp.
325
338
.10.1006/jsvi.1998.1560
13.
Cveticanin
,
L.
,
2011
, “
Pure Odd-Order Oscillators With Constant Excitation
,”
J. Sound Vib.
,
330
(
5
), pp.
976
986
.10.1016/j.jsv.2010.09.011
14.
Brennan
,
M. J.
,
Kovacic
,
I.
,
Carrella
,
A.
, and
Waters
,
T. P.
,
2008
, “
On the Jump-Up and Jump-Down Frequencies of the Duffing Oscillator
,”
J. Sound Vib.
,
318
(
4
), pp.
1250
1261
.10.1016/j.jsv.2008.04.032
15.
Burton
,
T. D.
,
1983
, “
On the Amplitude Decay of Strongly Non-Linear Damped Oscillators
,”
J. Sound Vib.
,
87
(
4
), pp.
535
541
.10.1016/0022-460X(83)90504-7
16.
Yuste
,
S. B.
, and
Bejarano
,
J. D.
,
1987
, “
Amplitude Decay of Damped Non-Linear Oscillators Studied With Jacobian Elliptic Functions
,”
J. Sound Vib.
,
114
(
1
), pp.
33
44
.10.1016/S0022-460X(87)80231-6
17.
Mickens
,
R. E.
,
2005
, “
A Generalized Iteration Procedure for Calculating Approximations to Periodic Solutions of Truly Nonlinear Oscillators
,”
J. Sound Vib.
,
287
(
4–5
), pp.
1045
1051
.10.1016/j.jsv.2005.03.005
18.
Salenger
,
G.
,
Vakakis
,
A. F.
,
Gendelman
,
O.
,
Manevitch
,
L.
, and
Andrianov
,
I.
,
1999
, “
Transitions From Strongly to Weakly Nonlinear Motions of Damped Nonlinear Oscillators
,”
Nonlinear Dyn.
,
20
(
2
), pp.
99
114
.10.1023/A:1008354208466
19.
Andrianov
,
I. V.
, and
Awrejcewicz
,
J.
,
2003
, “
Asymptotical Behavior of a System With Damping and High Power-Form Non-Linearity
,”
J. Sound Vib.
,
267
(
5
), pp.
1169
1174
.10.1016/S0022-460X(03)00214-1
20.
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2005
, “
Experimental Study of Non-Linear Energy Pumping Occurring at a Single Fast Frequency
,”
Int. J. Non-Linear Mech.
,
40
(
6
), pp.
891
899
.10.1016/j.ijnonlinmec.2004.11.001
21.
Musienko
,
A. I.
,
Lamarrque
,
C. H.
, and
Manevitch
,
L. I.
,
2006
, “
Design of Mechanical Energy Pumping Devices
,”
J. Vib. Control
,
12
(
4
), pp.
355
371
.10.1177/1077546306062098
22.
Quinn
,
D. D.
,
Gendelman
,
O.
,
Kerschen
,
G.
,
Sapsis
,
T. P.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2008
, “
Efficiency of Targeted Energy Transfers in Coupled Nonlinear Oscillators Associated With 1:1 Resonance Capture: Part I
,”
J. Sound Vib.
,
311
(
3–5
), pp.
1228
1248
.10.1016/j.jsv.2007.10.026
23.
Quinn
,
D. D.
,
Hubbard
,
S.
,
Wierschem
,
N.
,
Al-Shudeifat
,
M. A.
,
Ott
,
R. J.
,
Luo
,
J.
,
Spencer
,
B. F.
, Jr.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Equivalent Modal Damping, Stiffening and Energy Exchanges in Multi-Degree-of-Freedom Systems With Strongly Nonlinear Attachments
,”
Proc. Inst. Mech. Eng., Part K
,
226
(
2
), pp.
122
146
. 10.1177/1464419311432671
24.
Sapsis
,
T. P.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Effective Stiffening and Damping Enhancement of Structures With Strongly Nonlinear Local Attachments
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011016
.10.1115/1.4005005
25.
Sapsis
,
T. P.
,
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
Kerschen
,
G.
, and
Quinn
,
D. D.
,
2009
, “
Efficiency of Targeted Energy Transfers in Coupled Nonlinear Oscillators Associated With 1:1 Resonance Captures: Part II, Analytical Study
,”
J. Sound Vib.
,
325
(
1–2
), pp.
297
320
.10.1016/j.jsv.2009.03.004
26.
Vakakis
,
A. F.
,
2003
, “
Shock Isolation Through the Use of Nonlinear Energy Sinks
,”
J. Vib. Control
,
9
(
1–2
), pp.
79
93
.10.1177/107754603030742
27.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.10.1115/1.1345525
28.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Kerschen
,
G.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, I and II
,
Springer-Verlag
,
Berlin, Germany
.
29.
Wierschem
,
N. E.
,
Quinn
,
D. D.
,
Hubbard
,
S. A.
,
Al-Shudeifat
,
M. A.
,
McFarland
,
D. M.
,
Luo
,
J.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
, Jr.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Passive Damping Enhancement of a Two-Degree-of-Freedom System Through a Strongly Nonlinear Two-Degree-of-Freedom Attachment
,”
J. Sound Vib.
,
331
(
25
), pp.
5393
5407
.10.1016/j.jsv.2012.06.023
30.
Mickens
,
R. E.
,
2003
, “
Fractional Van Der Pol Equations
,”
J. Sound Vib.
,
259
(
2
), pp.
457
460
.10.1006/jsvi.2002.5170
31.
Mickens
,
R. E.
,
2001
, “
Oscillations in an x4/3 Potential
,”
J. Sound Vib.
,
246
(
2
), pp.
375
378
.10.1006/jsvi.2000.3583
32.
Mickens
,
R. E.
,
2006
, “
Iteration Method Solutions for Conservative and Limit-Cycle x1/3 Force Oscillators
,”
J. Sound Vib.
,
292
(
3
), pp.
964
968
.10.1016/j.jsv.2005.08.020
33.
Mickens
,
R. E.
,
2010
,
Truly Nonlinear Oscillations: Harmonic Balance, Parameter Expansions, Iteration, and Averaging Methods
,
World Scientific
, Singapore.
34.
Kovacic
,
I.
, and
Rakaric
,
Z.
,
2010
, “
Oscillators With a Fractional-Order Restoring Force: Higher-Order Approximations for Motion Via a Modified Ritz Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
9
), pp.
2651
2658
.10.1016/j.cnsns.2009.09.030
35.
Gottlieb
,
H. P. W.
,
2003
, “
Frequencies of Oscillators With Fractional-Power Non-Linearities
,”
J. Sound Vib.
,
261
(
3
), pp.
557
566
.10.1016/S0022-460X(02)01003-9
36.
Cveticanin
,
L.
,
2009
, “
Oscillator With Fraction Order Restoring Force
,”
J. Sound Vib.
,
320
(
4
), pp.
1064
1077
.10.1016/j.jsv.2008.08.026
37.
Rakaric
,
Z.
, and
Kovacic
,
I.
,
2011
, “
Approximations for Motion of the Oscillators With a Non-Negative Real-Power Restoring Force
,”
J. Sound Vib.
,
330
(
2
), pp.
321
336
.10.1016/j.jsv.2010.08.008
38.
Pilipchuk
,
V. N.
,
2007
, “
Strongly Nonlinear Vibrations of Damped Oscillators With Two Nonsmooth Limits
,”
J. Sound Vib.
,
302
(
1–2
), pp.
398
402
.10.1016/j.jsv.2006.11.018
39.
Pilipchuk
,
V. N.
,
2004
, “
Oscillators With a Generalized Power-Form Elastic Term
,”
J. Sound Vib.
,
270
(
1
), pp.
470
472
.10.1016/S0022-460X(03)00531-5
40.
Andrianov
,
I. V.
, and
van Horssen
,
W. T.
,
2006
, “
Analytical Approximations of the Period of a Generalized Nonlinear van der Pol Oscillator
,”
J. Sound Vib.
,
295
(
3
), pp.
1099
1104
.10.1016/j.jsv.2006.02.006
41.
Tang
,
B.
, and
Brennan
,
M. J.
,
2012
, “
A Comparison of the Effects of Nonlinear Damping on the Free Vibration of a Single-Degree-of-Freedom System
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
024501
.10.1115/1.4005010
42.
Al-Shudeifat
,
M. A.
,
2013
, “
Analytical Formulas for the Energy, Velocity and Displacement Decays of Purely Nonlinear Damped Oscillators
,”
J. Vib. Control
(epub).10.1177/1077546313493817
43.
Al-Shudeifat
,
M. A.
,
2014
, “
Highly Efficient Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
76
(
4
), pp.
1905
1920
.10.1007/s11071-014-1256-x
44.
Manevitch
,
L. I.
,
Sigalov
,
G.
,
Romeo
,
F.
,
Bergman
,
L. A.
, and
Vakakis
,
A.
,
2014
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Analytical Study
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041011
.10.1115/1.4025150
You do not currently have access to this content.