The Moebius transformation maps straight lines or circles in one complex domain into straight lines or circles in another. It has been observed that the equations relating acoustic or mechanical impedance modifications to responses under harmonic excitation are in the form of the Moebius transformation. Using the properties of the Moebius transformation, the impedance modification that will minimize the response at a particular frequency can be predicted provided that the modification is between two positions. To prove the utility of this method for acoustic and mechanical systems, it is demonstrated that the equations for calculation of transmission and insertion loss of mufflers, insertion loss of enclosures, and insertion loss of mounts are in the form of the Moebius transformation for impedance modifications. The method is demonstrated for enclosure insertion loss by adding a short duct in a partition introduced to an enclosure. In a similar manner, it is shown that the length or area of a bypass duct in a muffler can be tuned to maximize the transmission loss. In the final example, the insertion loss of an isolator system is improved at a particular frequency by adding mass to one side of the isolator.

References

References
1.
Vincent
,
A. H.
,
1973
, “
A Note on the Properties of the Variation of Structural Response With Respect to a Single Structural Parameter When Plotted in the Complex Plane
,” Dynamics Department, Westland Helicopters Ltd., Yeovil, UK, Report No. GEN/DYN/RES/010R.
2.
Done
,
G. T. S.
, and
Hughes
,
A. D.
,
1975
, “
The Response of a Vibrating Structure as a Function of Structural Parameters
,”
J. Sound Vib.
,
38
(
2
), pp.
255
266
.10.1016/S0022-460X(75)80009-5
3.
Tehrani
,
M. G.
,
Wang
,
W.
,
Mares
,
C.
, and
Mottershead
,
J. E.
,
2006
, “
The Generalized Vincent Circle in Vibration Suppression
,”
J. Sound Vib.
,
292
(
3
), pp.
661
675
.10.1016/j.jsv.2005.08.024
4.
Herrin
,
D. W.
,
Liu
,
J.
, and
Sampath
,
G.
,
2009
, “
The Applicability of the Moebius Transformation to Mechanical and Acoustic Impedance Modifications
,”
J. Sound Vib.
,
328
(
4
), pp.
382
395
.10.1016/j.jsv.2009.08.009
5.
Needham
,
T.
,
1998
,
Visual Complex Analysis
,
Clarendon Press
,
Oxford, UK
.
6.
Munjal
,
M. L.
,
2014
,
Acoustics of Ducts and Mufflers
,
John Wiley and Sons
, New York.
7.
Levine
,
H.
, and
Schwinger
,
J.
,
1948
, “
On the Radiation of Sound From an Unflanged Circular Pipe
,”
Phys. Rev.
,
73
(
4
), pp.
383
406
.10.1103/PhysRev.73.383
8.
Pierce
,
A. D.
,
1981
,
Acoustics: An Introduction to Its Physical Principles and Applications
,
McGraw-Hill
,
New York
.
9.
LMS International,
2011
, LMS Virtual Lab Rev 10-SL1 BEM Acoustic Manual, LMS International, Leuven, Belgium.
10.
Wu
,
Q
.,
1988
, “
Empirical Relations Between Acoustical Properties and Flow Resistivity of Porous Plastic Open-Cell Foam
,”
Appl. Acoust.
,
25
(
3
), pp.
141
148
.10.1016/0003-682X(88)90090-4
11.
Stewart
,
G. W.
,
1928
, “
The Theory of the Herschel–Quincke Tube
,”
Phys. Rev.
,
31
(
4
), pp.
696
698
.10.1103/PhysRev.31.696
12.
Selamet
,
A.
,
Dickey
,
N. S.
, and
Novak
,
J. M.
,
1994
, “
The Herschel–Quincke Tube: A Theoretical, Computational, and Experimental Investigation
,”
J. Acoust. Soc. Am.
,
96
(
5
), pp.
3177
3185
.10.1121/1.411255
13.
Selamet
,
A.
, and
Easwaran
,
V.
,
1997
, “
Modified Herschel–Quincke Tube: Attenuation and Resonance for n-Duct Configuration
,”
J. Acoust. Soc. Am.
,
102
(
1
), pp.
164
169
.10.1121/1.419775
14.
Karlsson
,
M.
,
Glav
,
R.
, and
Åbom
,
M.
,
2008
, “
The Herschel–Quincke Tube: The Attenuation Conditions and Their Sensitivity to Mean Flow
,”
J. Acoust. Soc. Am.
,
124
(
2
), pp.
723
732
.10.1121/1.2940580
15.
Karlsson
,
M.
, and
Glav
,
R.
,
2007
, “
The Flow Reversal Resonator
,”
SAE
Technical Paper No. 2007-01-2203.10.4271/2007-01-2203
16.
Zhang
,
Y.
,
Herrin
,
D. W.
, and
Wu
,
T. W.
,
2013
, “
Adding Bypass Ducts to Enhance Muffler Performance Without Increasing Size
,”
SAE Int. J. Passenger Cars- Mech. Syst.
,
6
(
2
), pp.
1102
1107
.10.4271/2013-01-1882
17.
Mechel
,
F. P.
,
2002
,
Formulas of Acoustics
, Vol. 2,
Springer
,
Berlin, Germany
.
18.
ASTM
,
2009
, “
Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method
,”
ASTM International
,
West Conshohocken, PA, Standard No. E2611-09
.
19.
Izak
,
G. D.
,
1993
, “
Vibration Isolation
,”
Noise and Vibration Control in Vehicles
,
M. J.
Crocker
, and
N. I.
Ivanov
, eds.,
Politekhnika
,
St. Petersburg, Russia
, Chap. 5.
20.
Wallin
,
H. P.
,
Carlsson
,
U.
,
Åbom
,
M.
,
Bodén
,
H.
, and
Glav
,
R.
,
2011
,
Sound and Vibration
,
Marcus Wallenberg Laboratory
,
Stockholm, Sweden
.
21.
Norwood
,
C. J.
, and
Dickens
,
J. D.
,
1998
, “
The Effect of Vibration Isolator Properties and Structural Stiffness on Isolator Performance
,”
J. Vib. Control
,
4
(
3
), pp.
253
275
.10.1177/107754639800400303
22.
Soedel
,
W.
,
2004
,
Vibrations of Shells and Plates
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.