Experiments with a vertical, flexible, and submerged cylinder were carried out to investigate fundamental aspects of risers dynamics subjected to harmonic excitation at the top. The flexible model was designed aiming a high level of dynamic similarity with a real riser. Vertical motion, with amplitude of 1% of the unstretched length, was imposed with a device driven by a servomotor. Responses to distinct exciting frequency ratios were investigated, namely, ft:fN,1 = 1:3; 1:1; 2:1, and 3:1. Cartesian coordinates of 43 monitored points positioned all along the span were experimentally acquired by using an optical tracking system. A simple Galerkin's projection applied for modal decomposition, combined with standard Mathieu chart analysis, led to the identification of parametric resonances. A curious finding is that the Mathieu instability may simultaneously occur in more than one mode, leading to interesting dynamic behaviors, also revealed through standard power spectra analysis and displacement scalograms.

References

References
1.
Pesce
,
C. P.
, and
Martins
,
C. A.
,
2005
, “
Numerical Computation of Riser Dynamics
,”
Numerical Modeling in Fluid–Structure Interaction
,
S.
Chakrabarti
, ed.,
WIT Press
,
Southampton, UK
, pp.
253
309
.10.2495/978-1-85312-837-0/07
2.
Silveira
,
L. M. Y.
,
Martins
,
C. A.
,
Cunha
,
L. D.
, and
Pesce
,
C. P.
,
2007
, “
An Investigation on the Effect of Tension Variation on VIV of Risers
,”
ASME
Paper No. OMAE2007-29247.10.1115/OMAE2007-29247
3.
Joseffson
,
P. M.
, and
Dalton
,
C.
,
2010
, “
An Analytical/Computational Approach in Assessing Vortex-Induced Vibration of a Variable Tension Riser
,”
ASME J. Offshore Mech. Arct. Eng.
,
132
(
3
), p.
031302
.10.1115/1.4000500
4.
Srinil
,
N.
,
2011
, “
Analysis and Prediction of Vortex-Induced Vibrations of a Variable-Tension Vertical Risers in Linearly Sheared Currents
,”
Appl. Ocean Res.
,
33
(
1
), pp.
41
53
.10.1016/j.apor.2010.11.004
5.
Meirovitch
,
L.
,
2003
,
Methods of Analytical Dynamics
,
Dover Publications
, Mineola, NY.
6.
Ramani
,
D. V.
,
Keith
,
W. L.
, and
Rand
,
R. H.
,
2004
, “
Perturbation Solution for Secondary Bifurcation in the Quadratically-Damped Mathieu Equation
,”
Int. J. Non-Linear Mech.
,
39
(
3
), pp.
491
502
.10.1016/S0020-7462(02)00218-4
7.
Patel
,
M. H.
, and
Park
,
H. I.
,
1991
, “
Dynamics of Tension Leg Platform Tethers at Low Tension. Part I—Mathieu Stability at Large Parameters
,”
Mar. Struct.
,
4
(
3
), pp.
257
273
.10.1016/0951-8339(91)90004-U
8.
Simos
,
A. N.
, and
Pesce
,
C. P.
,
1997
, “
Mathieu Stability in the Dynamics of TLP's Tethers Considering Variable Tension Along the Length
,” Offshore Engineering, F. L. L. B. Carneiro, A. J. Ferrante, R. C. Batista, and N. F. F. Ebecken, eds.,
WIT Press
, Ashurst, UK.
9.
Chatjigeorgiou
,
I. K.
, and
Mavrakos
,
S. A.
,
2002
, “
Bounded and Unbounded Coupled Transverse Response of Parametrically Excited Vertical Marine Risers and Tensioned Cable Legs for Marine Applications
,”
Appl. Ocean Res.
,
24
(
6
), pp.
341
354
.10.1016/S0141-1187(03)00017-8
10.
Zeng
,
X.
,
Xu
,
W.
,
Li
,
X.
, and
Wu
,
Y.
,
2008
, “
Nonlinear Dynamic Responses of the Tensioned Tether Under Parametric Excitation
,”
Eighteenth International Offshore and Polar Engineering Conference
(ISOPE 2008), Vancouver, Canada, July 6–11, pp.
78
83
.
11.
Yang
,
H.
,
Xiao
,
F.
, and
Xu
,
P.
,
2013
, “
Parametric Instability Prediction in a Top-Tensioned Riser in Irregular Waves
,”
Ocean Eng.
,
70
, pp.
39
50
.10.1016/j.oceaneng.2013.05.002
12.
Rateiro
,
F.
,
Pesce
,
C. P.
,
Gonçalves
,
R. T.
,
Franzini
,
G. R.
,
Fujarra
,
A. L. C.
,
Salles
,
R.
, and
Mendes
,
P.
,
2012
, “
Risers Model Tests: Scaling Methodology and Dynamic Similarity
,”
22nd International Ocean and Polar Engineering Conference
(ISOPE 2012), Rhodes, Greece, June 17–22, pp.
439
445
.
13.
Rateiro
,
F.
,
Gonçalves
,
R. T.
,
Pesce
,
C. P.
,
Fujarra
,
A. L. C.
,
Franzini
,
G. R.
, and
Mendes
,
P.
,
2013
, “
A Model Scale Experimental Investigation on Vortex-Self Induced Vibrations (VSIV) of Catenary Risers
,”
ASME
Paper No. OMAE2013-10447.10.1115/OMAE2013-10447
14.
Franzini
,
G. R.
,
Rateiro
,
F.
,
Gonçalves
,
R. T.
,
Pesce
,
C. P.
, and
Mazzilli
,
C. E. N.
,
2012
, “
An Experimental Assessment of Rigidity Parameters of a Small-Scaled Riser Model
,”
12th Pan American Congress of Applied Mechanics (PACAM XII)
, St. Augustine, Trinidad, Jan. 2–6.
15.
de Mello
,
P. C.
,
Rateiro
,
F.
,
Fujarra
,
A. L. C.
,
Oshiro
,
A. T.
,
Neves
,
C. R.
,
dos Santos
,
M. F.
, and
Tannuri
,
E. A.
,
2011
, “
Experimental Set-Up for Analysis of Subsea Equipment Installation
,”
ASME
Paper No. OMAE2011-49946.10.1115/OMAE2011-49946
16.
Pesce
,
C. P.
,
Fujarra
,
A. L. C.
,
Simos
,
A. N.
, and
Tannuri
,
E. A.
,
1999
, “
Analytical and Closed Form Solutions for Deep Water Riser-Like Eigenvalue Problem
,”
Ninth International Offshore and Polar Engineering Conference
(
ISOPE
), Brest, France, May 30–June 4, pp.
255
264
.
17.
Chatjigeorgiou
,
I. K.
,
2008
, “
Application of the WKB Method to Catenary-Shaped Slender Structures
,”
Math. Comput. Modell.
,
48
(
1–2
), pp.
249
257
.10.1016/j.mcm.2007.08.012
18.
Franzini
,
G. R.
,
Gonçalves
,
R. T.
,
Meneghini
,
J. R.
, and
Fujarra
,
A. L. C.
,
2013
, “
One and Two Degrees-of-Degrees Vortex-Induced Vibration Experiments With Yawed Cylinders
,”
J. Fluids Struct.
,
42
, pp.
401
420
.10.1016/j.jfluidstructs.2013.07.006
19.
Chatjigeorgiou
,
I. K.
,
2008
, “
Solution of the Boundary Layer Problem for Calculating the Natural Modes of Riser-Type Slender Structures
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
1
), p.
011003
.10.1115/1.2786476
20.
Mazzilli
,
C. E. N.
,
Lenci
,
S.
, and
Demeio
,
L.
,
2014
, “
Non-Linear Free Vibrations of Tensioned Vertical Risers
,”
8th European Nonlinear Dynamics Conference
(ENOC2014), Vienna, Austria, July 6–11.
21.
Franzini
,
G. R.
,
Gonçalves
,
R. T.
,
Pesce
,
C. P.
,
Fujarra
,
A. L. C.
,
Mazzilli
,
C. E. N.
,
Meneghini
,
J. R.
, and
Mendes
,
P.
,
2014
, “
Vortex-Induced Vibration Experiments With a Long Semi-Immersed Flexible Cylinder Under Tension Modulation: Fourier Transform and Hilbert–Huang Spectral Analyses
,”
J. Braz. Soc. Mech. Sci. Eng.
(online).10.1007/s40430-014-0182-7
22.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1991
, “
Non-Linear Normal Modes and Invariant Manifolds
,”
J. Sound Vib.
,
150
(
1
), pp.
170
173
.10.1016/0022-460X(91)90412-D
23.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1993
, “
Normal Modes for Non-Linear Vibratory Systems
,”
J. Sound Vib.
,
164
(
1
), pp.
85
124
.10.1006/jsvi.1993.1198
You do not currently have access to this content.