In sound field reconstruction, spurious sources called ghost images always appear around the position of the real sound source in the sound pressure distribution map because of the grating and side lobes, thus resulting in an incorrect identification of the sound source. To solve this problem, a method for suppressing ghost images is proposed in this paper; such method is based on particle swarm optimization (PSO) and minimum variance distortionless response (MVDR) beamforming. In this method, the elements distribution of a microphone array is first optimized by the PSO algorithm to acquire the optimal design of an unequal spacing microphone array. With this array, the grating lobe is suppressed, and the increscent value of the inherent side lobe value is reduced. Second, MVDR algorithm is used to weaken the effect of the side lobes and to obtain a sound pressure distribution map in which the ghost images are suppressed. The advantage of this method is the combination of the unequal spacing array, which suppresses the grating lobe, and the MVDR algorithm, which has excellent performance in spatial filtering. Through this method, a microphone array with a few number of elements can achieve ghost image suppression. Experiments on sound field reconstruction in an anechoic chamber for a single-tone sound source are conducted to validate the proposed method. Moreover, some extra sound field reconstructions for a single-tone sound source and double sound sources with broadband in a normal room with different parameters such as the array shape and distance from the sources to the array are conducted to discuss their influences on the effectiveness of the proposed method.

References

References
1.
Michel
,
U.
,
2006
, “
History of Acoustic Beamforming
,”
Berlin Beamforming Conference
,
Berlin
,
Germany
, Nov. 21–22, Paper No. BeBeC-2006-01.
2.
Yardibi
,
T.
,
Zawodny
,
N. S.
,
Bahr
,
C.
,
Liu
,
F.
,
Cattafesta
,
L. N.
, and
Li
,
J.
,
2010
, “
Comparison of Microphone Array Processing Techniques for Aeroacoustic Measurements
,”
Int. J. Aeroacoustics
,
9
(
6
), pp.
733
761
.10.1260/1475-472X.9.6.733
3.
Bai
,
M. R.
, and
Lee
,
J.
,
1998
, “
Industrial Noise Source Identification by Using an Acoustic Beamforming System
,”
ASME J. Vib. Acoust.
,
120
(
2
), pp.
426
433
.10.1115/1.2893847
4.
Shefeng
,
Y.
, and
Yuanliang
,
M.
,
2009
,
Sensor Array Beampattern Optimization: Theory With Applications
,
Science Press
,
Beijing, China
, Chap. 2.
5.
Fangfang
,
Z.
,
2007
, “
Numeric Simulation and Experimental Research of Sound Source Identification With Beamforming Method
,” M.S. thesis, Shanghai Jiaotong University, Shanghai, China.
6.
Steinberg
,
B. D.
,
1973
, “
Comparison Between the Peak Sidelobe of the Random Array and Algorithmically Designed Aperiodic Arrays
,”
IEEE Trans. Antennas Propag.
,
21
(
3
), pp.
366
370
.10.1109/TAP.1973.1140493
7.
Christensen
,
J. J.
, and
Hald
,
J.
,
2004
, “
Beamforming
,” Bruel & Kjaer, Nærum, Denmark, Technical Review No. 1-2004.
8.
Lo
,
K. W.
, and
Ferguson
,
B. G.
,
2007
, “
Broadband Source Angle Estimation Using a Sparse Uniform Linear Acoustic Array
,” Information, Decision and Control (
IDC '07
), Adelaide, Australia, Feb. 12–14, pp.
106
111
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4252449.
9.
Cigada
,
A.
,
Lurati
,
M.
,
Ripamonti
,
F.
, and
Vanali
,
M.
,
2008
, “
Beamforming Method: Suppression of Spatial Aliasing Using Moving Arrays
,”
2nd Berlin Beamforming Conference
,
Berlin
,
Germany
, Feb. 19–20, Paper No. BEBEC-2008-19.
10.
Cigada
,
A.
,
Lurati
,
M.
,
Ripamonti
,
F.
, and
Vanali
,
M.
,
2008
, “
Moving Microphone Arrays to Reduce Spatial Aliasing in the Beamforming Technique: Theoretical Background and Numerical Investigation
,”
J. Acoust. Soc. Am.
,
124
(
6
), pp.
3648
3658
.10.1121/1.2998778
11.
Yuechan
,
L.
,
Chao
,
S.
, and
Yuanan
,
H.
,
2011
, “
Research on Sound Source Localization Technology Using Rotating Array
,”
Tech. Acoust.
,
30
(
3
), pp.
31
33
.
12.
Unz
,
H.
,
1960
, “
Linear Arrays With Arbitrarily Distributed Elements
,”
IRE Trans. Antennas Propag.
,
8
(
2
), pp.
222
223
.10.1109/TAP.1960.1144829
13.
Bray
,
M. G.
,
Werner
,
D. H.
,
Boeringer
,
D. W.
, and
Machuga
,
D. W.
,
2002
, “
Optimization of Thinned Aperiodic Linear Phased Arrays Using Genetic Algorithms to Reduce Grating Lobes During Scanning
,”
IEEE Trans. Antennas Propag.
,
50
(
12
), pp.
1732
1742
.10.1109/TAP.2002.807947
14.
Ghosh
,
P.
,
Banerjee
,
J.
,
Das
,
S.
, and
Chowdury
,
S. S.
,
2012
, “
Design of Non-Uniform Circular Antenna Arrays—An Evolutionary Algorithm Based Approach
,”
Prog. Electromagn. Res. B
,
43
, pp.
333
354
.10.2528/PIERB12051808
15.
Capon
,
J.
,
1969
, “
High-Resolution Frequency-Wavenumber Spectrum Analysis
,”
Proc. IEEE
,
57
(
8
), pp.
1408
1418
.10.1109/PROC.1969.7278
16.
Cox
,
H.
,
Zeskind
,
R. M.
, and
Owen
,
M. M.
,
1987
, “
Robust Adaptive Beamforming
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
35
(
10
), pp.
1365
1376
.10.1109/TASSP.1987.1165054
17.
Stoica
,
P.
,
Wang
,
Z. S.
, and
Li
,
J.
,
2003
, “
Robust Capon Beamforming
,”
IEEE Signal Process. Lett.
,
10
(
6
), pp.
172
175
.10.1109/LSP.2003.811637
18.
Vorobyov
,
S. A.
,
Gershman
,
A. B.
, and
Zhi-Quan
,
L.
,
2003
, “
Robust Adaptive Beamforming Using Worst-Case Performance Optimization: A Solution to the Signal Mismatch Problem
,”
IEEE Trans. Signal Process.
,
51
(
2
), pp.
313
324
.10.1109/TSP.2002.806865
19.
Markovic
,
D.
,
Antonacci
,
F.
,
Sarti
,
A.
, and
Tubaro
,
S.
,
2013
, “
Sound Field Imaging in the Ray Space
,”
IEEE Trans. Audio, Speech, Lang. Process.
,
21
(
12
), pp.
2493
2505
.10.1109/TASL.2013.2274697
20.
Cigada
,
A.
,
Ripamonti
,
F.
, and
Vanali
,
M.
,
2007
, “
The Delay & Sum Algorithm Applied to Microphone Array Measurements: Numerical Analysis and Experimental Validation
,”
Mech. Syst. Sig. Process.
,
21
(
6
), pp.
2645
2664
.10.1016/j.ymssp.2007.01.001
21.
Gade
,
S.
, and
Hald
,
J.
,
2005
, “
Array Designs Optimized for Both Low-Frequency NAH and High-Frequency Beamforming
,”
SAE
Technical Paper No. 2005-01-401410.4271/2005-01-4014.
22.
Faheem
,
A. M.
,
2009
, “
Grating Lobe Suppression in Uniformly Spaced Linear Phased Arrays
,”
2009 National Radio Science Conference
(NRSC 2009),
New Cairo, Egypt
, Mar. 17–19, Vols. 1 and 2, pp.
873
882
.
23.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of 1995 IEEE International Conference on Neural Networks
,
Perth, WA
, Nov. 27–Dec. 1, Vol.
4
, pp.
1942
1948
10.1109/ICNN.1995.488968.
24.
Shi
,
Y.
, and
Eberhart
,
R.
,
1998
, “
A Modified Particle Swarm Optimizer
,”
IEEE World Congress on Computational Intelligence
, Evolutionary Computation Proceedings,
Anchorage, AK
, May 4–9, pp.
69
73
10.1109/ICEC.1998.699146.
25.
Qiang
,
F.
,
Min
,
L.
,
Yue
,
F.
, and
Long
,
W.
,
2013
, “
Method of Eliminating Ghost Images and Improving Reconstruction Precision in Acoustic Fields Reconstruction
,”
Noise Vib. Control
,
33
(
4
), pp.
200
206
http://nvc.sjtu.edu.cn/EN/10.3969/j.issn.1006-1335.2013.04.042.
You do not currently have access to this content.