The free vibration of curvilinearly stiffened shallow shells is investigated by the Ritz method. Based on the first-order shear deformation shell theory and three-dimensional (3D) curved beam theory, the strain and kinetic energies of the stiffened shells are introduced. The stiffener can be placed anywhere within the shell, without the need for having the stiffener and shell element nodes coincide. Numerical results with different geometrical shells and boundary conditions and different stiffener locations and curvatures are analyzed to verify the feasibility of the presented Ritz method for solving the problems. The results show good agreement with those using other methods, e.g., using a converged set of results obtained by Nastran.

References

References
1.
Olson
,
M. D.
, and
Hazell
,
C. R.
,
1977
, “
Vibration Studies on Some Integral Rib-Stiffened Plates
,”
J. Sound Vib.
,
50
(
1
), pp.
43
61
.10.1016/0022-460X(77)90550-8
2.
Mukhopadhyay
,
M.
,
1981
, “
Stiffened Plate Plane Stress Elements for the Analysis of Ships' Structures
,”
Comput. Struct.
,
13
(
4
), pp.
563
573
.10.1016/0045-7949(81)90052-3
3.
Palani
,
G. S.
,
Iyer
,
N. R.
, and
Rao
,
T. V. S. R. A.
,
1992
, “
An Efficient Finite-Element Model for Static and Vibration Analysis of Eccentrically Stiffened Plates Shells
,”
Comput. Struct.
,
43
(
4
), pp.
651
661
.10.1016/0045-7949(92)90506-U
4.
Kapania
,
R. K.
,
Li
,
J.
, and
Kapoor
,
H.
,
2005
, “
Optimal Design of Unitized Panels With Curvilinear Stiffeners
,”
AIAA
Paper No. 2005-7482.10.2514/6.2005-7482
5.
Peng
,
L. X.
,
Liew
,
K. M.
, and
Kitipornchai
,
S.
,
2006
, “
Buckling and Free Vibration Analyses of Stiffened Plates Using the FSDT Mesh-Free Method
,”
J. Sound Vib.
,
289
(
3
), pp.
421
449
.10.1016/j.jsv.2005.02.023
6.
Holopainen
,
T. P.
,
1995
, “
Finite-Element Free-Vibration Analysis of Eccentrically Stiffened Plates
,”
Comput. Struct.
,
56
(
6
), pp.
993
1007
.10.1016/0045-7949(94)00574-M
7.
Goswami
,
S.
, and
Mukhopadhyay
,
M.
,
1995
, “
Finite Element Free Vibration Analysis of Laminated Composite Stiffened Shell
,”
J. Compos. Mater.
,
29
(
18
), pp.
2388
2422
.10.1177/002199839502901802
8.
Ray
,
C.
, and
Satsangi
,
S. K.
,
1996
, “
Finite Element Analysis of Laminated Hat-Stiffened Plates
,”
J. Reinf. Plast. Compos.
,
15
(
12
), pp.
1174
1193
.10.1177/073168449601501201
9.
Sivasubramonian
,
B.
,
Rao
,
G.
, and
Krishnan
,
A.
,
1999
, “
Free Vibration of Longitudinally Stiffened Curved Panels With Cutout
,”
J. Sound Vib.
,
226
(
1
), pp.
41
55
.10.1006/jsvi.1999.2281
10.
Nayak
,
A.
, and
Bandyopadhyay
,
J.
,
2002
, “
On the Free Vibration of Stiffened Shallow Shells
,”
J. Sound Vib.
,
255
(
2
), pp.
357
382
.10.1006/jsvi.2001.4159
11.
Leissa
,
A.
,
1973
, “
The Free Vibration of Rectangular Plates
,”
J. Sound Vib.
,
31
(
3
), pp.
257
293
.10.1016/S0022-460X(73)80371-2
12.
Leissa
,
A.
, and
Kadi
,
A.
,
1971
, “
Curvature Effects on Shallow Shell Vibrations
,”
J. Sound Vib.
,
16
(
2
), pp.
173
187
.10.1016/0022-460X(71)90482-2
13.
Leissa
,
A.
,
Lee
,
J.
, and
Wang
,
A.
,
1983
, “
Vibrations of Cantilevered Doubly-Curved Shallow Shells
,”
Int. J. Solids Struct.
,
19
(
5
), pp.
411
424
.10.1016/0020-7683(83)90052-5
14.
Narita
,
Y.
, and
Leissa
,
A. W.
,
1984
, “
Vibrations of Corner Point Supported Shallow Shells of Rectangular Planform
,”
Earthquake Eng. Struct. Dyn.
,
12
(
5
), pp.
651
661
.10.1002/eqe.4290120506
15.
Liew
,
K.
, and
Wang
,
C.
,
1993
, “
pb-2 Rayleigh–Ritz Method for General Plate Analysis
,”
Eng. Struct.
,
15
(
1
), pp.
55
60
.10.1016/0141-0296(93)90017-X
16.
Lim
,
C.
, and
Liew
,
K.
,
1994
, “
A pb-2 Ritz Formulation for Flexural Vibration of Shallow Cylindrical Shells of Rectangular Planform
,”
J. Sound Vib.
,
173
(
3
), pp.
343
375
.10.1006/jsvi.1994.1235
17.
Liew
,
K.
, and
Lim
,
C.
,
1996
, “
Vibration of Doubly-Curved Shallow Shells
,”
Acta Mech.
,
114
(
1–4
), pp.
95
119
.10.1007/BF01170398
18.
Liew
,
K.
,
Lim
,
C.
, and
Kitipornchai
,
S.
,
1997
, “
Vibration of Shallow Shells: A Review With Bibliography
,”
ASME Appl. Mech. Rev.
,
50
(
8
), pp.
431
444
.10.1115/1.3101731
19.
Jiang
,
S.
,
Yang
,
T.
,
Li
,
W.
, and
Du
,
J.
,
2013
, “
Vibration Analysis of Doubly Curved Shallow Shells With Elastic Edge Restraints
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
034502
.10.1115/1.4023146
20.
Qu
,
Y.
,
Chen
,
Y.
,
Chen
,
Y.
,
Long
,
X.
,
Hua
,
H.
, and
Meng
,
G.
,
2013
, “
A Domain Decomposition Method for Vibration Analysis of Conical Shells With Uniform and Stepped Thickness
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011014
.10.1115/1.4006753
21.
Laura
,
P. A. A.
, and
Gutierrez
,
R. H.
,
1981
, “
A Note on Transverse Vibrations of Stiffened Rectangular-Plates With Edges Elastically Restrained against Rotation
,”
J. Sound Vib.
,
78
(
1
), pp.
139
144
.10.1016/S0022-460X(81)80161-7
22.
Wu
,
J. R.
, and
Liu
,
W.
,
1988
, “
Vibration of Rectangular Plates With Edge Restraints and Intermediate Stiffeners
,”
J. Sound Vib.
,
123
(
1
), pp.
103
113
.10.1016/S0022-460X(88)80081-6
23.
Liew
,
K.
,
Xiang
,
Y.
,
Lim
,
M.
, and
Kitipornchai
,
S.
,
1994
, “
Vibration of Rectangular Mindlin Plates With Intermediate Stiffeners
,”
ASME J. Vib. Acoust.
,
116
(
4
), pp.
529
535
.10.1115/1.2930459
24.
Liew
,
K.
,
Xiang
,
Y.
,
Kitipornchai
,
S.
, and
Meek
,
J.
,
1995
, “
Formulation of Mindlin-Engesser Model for Stiffened Plate Vibration
,”
Comput. Methods Appl. Mech. Eng.
,
120
(
3
), pp.
339
353
.10.1016/0045-7825(94)00064-T
25.
Berry
,
A.
, and
Locqueteau
,
C.
,
1996
, “
Vibration and Sound Radiation of Fluid-Loaded Stiffened Plates With Consideration of In-Plane Deformation
,”
J. Acoust. Soc. Am.
,
100
(
1
), pp.
312
319
.10.1121/1.415880
26.
Xiang
,
Y.
,
Kitipornchai
,
S.
,
Liew
,
K.
, and
Lim
,
M.
,
1995
, “
Vibration of Stiffened Skew Mindlin Plates
,”
Acta Mech.
,
112
(
1–4
), pp.
11
28
.10.1007/BF01177475
27.
Molaghasemi
,
H.
, and
Harik
,
I.
,
1996
, “
Free Vibration of Stiffened Sector Plates
,”
J. Sound Vib.
,
190
(
4
), pp.
726
732
.10.1006/jsvi.1996.0088
28.
Mustafa
,
B.
, and
Ali
,
R.
,
1989
, “
An Energy Method for Free Vibration Analysis of Stiffened Circular Cylindrical Shells
,”
Comput. Struct.
,
32
(
2
), pp.
355
363
.10.1016/0045-7949(89)90047-3
29.
Jafari
,
A.
, and
Bagheri
,
M.
,
2006
, “
Free Vibration of Non-Uniformly Ring Stiffened Cylindrical Shells Using Analytical, Experimental and Numerical Methods
,”
Thin-Walled Struct.
,
44
(
1
), pp.
82
90
.10.1016/j.tws.2005.08.008
30.
Qu
,
Y.
,
Chen
,
Y.
,
Long
,
X.
,
Hua
,
H.
, and
Meng
,
G.
,
2013
, “
A Modified Variational Approach for Vibration Analysis of Ring-Stiffened Conical–Cylindrical Shell Combinations
,”
Eur. J. Mech. A/Solids
,
37
, pp.
200
215
.10.1016/j.euromechsol.2012.06.006
31.
Liew
,
K.
,
Ng
,
T.
, and
Zhao
,
X.
,
2005
, “
Free Vibration Analysis of Conical Shells via the Element-Free kp-Ritz Method
,”
J. Sound Vib.
,
281
(
3
), pp.
627
645
.10.1016/j.jsv.2004.01.005
32.
Zhao
,
X.
, and
Liew
,
K.
,
2011
, “
Free Vibration Analysis of Functionally Graded Conical Shell Panels by a Meshless Method
,”
Compos. Struct.
,
93
(
2
), pp.
649
664
.10.1016/j.compstruct.2010.08.014
33.
Lei
,
Z.
,
Liew
,
K.
, and
Yu
,
J.
,
2013
, “
Large Deflection Analysis of Functionally Graded Carbon Nanotube-Reinforced Composite Plates by the Element-Free kp-Ritz Method
,”
Comput. Methods Appl. Mech. Eng.
,
256
, pp.
189
199
.10.1016/j.cma.2012.12.007
34.
Zhang
,
L.
,
Lei
,
Z.
,
Liew
,
K.
, and
Yu
,
J.
,
2014
, “
Large Deflection Geometrically Nonlinear Analysis of Carbon Nanotube-Reinforced Functionally Graded Cylindrical Panels
,”
Comput. Methods Appl. Mech. Eng.
,
273
, pp.
1
18
.10.1016/j.cma.2014.01.024
35.
Cheng
,
R.
,
Zhang
,
L.
, and
Liew
,
K.
,
2014
, “
Modeling of Biological Population Problems Using the Element-Free kp-Ritz Method
,”
Appl. Math. Comput.
,
227
, pp.
274
290
.10.1016/j.amc.2013.11.033
36.
Zeng
,
H.
, and
Bert
,
C. W.
,
2001
, “
A Differential Quadrature Analysis of Vibration for Rectangular Stiffened Plates
,”
J. Sound Vib.
,
241
(
2
), pp.
247
252
.10.1006/jsvi.2000.3295
37.
Mecitoglu
,
Z.
, and
Dokmeci
,
M. C.
,
1992
, “
Free Vibrations of a Thin, Stiffened, Cylindrical Shallow Shell
,”
AIAA J.
,
30
(
3
), pp.
848
850
.10.2514/3.10998
38.
Cheng
,
S. P.
, and
Dade
,
C.
,
1990
, “
Dynamic Analysis of Stiffened Plates and Shells Using Spline Gauss Collocation Method
,”
Comput. Struct.
,
36
(
4
), pp.
623
629
.10.1016/0045-7949(90)90077-F
39.
Duc
,
N. D.
,
2013
, “
Nonlinear Dynamic Response of Imperfect Eccentrically Stiffened FGM Double Curved Shallow Shells on Elastic Foundation
,”
Compos. Struct.
,
99
, pp.
88
96
.10.1016/j.compstruct.2012.11.017
40.
Duc
,
N. D.
, and
Cong
,
P. H.
,
2013
, “
Nonlinear Dynamic Response of Imperfect Symmetric Thin Sigmoid-Functionally Graded Material Plate With Metal-Ceramic-Metal Layers on Elastic Foundation
,”
J. Vib. Control
, pp. 1–10.10.1177/1077546313489717
41.
Duc
,
N. D.
, and
Quan
,
T. Q.
,
2013
, “
Nonlinear Dynamic Analysis of Imperfect Functionally Graded Material Double Curved Thin Shallow Shells With Temperature-Dependent Properties on Elastic Foundation
,”
J. Vib. Control
, pp. 1–23.10.1177/1077546313494114
42.
Huy Bich
,
D.
,
Dinh Duc
,
N.
, and
Quoc Quan
,
T.
,
2014
, “
Nonlinear Vibration of Imperfect Eccentrically Stiffened Functionally Graded Double Curved Shallow Shells Resting on Elastic Foundation Using the First Order Shear Deformation Theory
,”
Int. J. Mech. Sci.
,
80
, pp.
16
28
.10.1016/j.ijmecsci.2013.12.009
43.
Tamijani
,
A. Y.
, and
Kapania
,
R. K.
,
2012
, “
Chebyshev–Ritz Approach to Buckling and Vibration of Curvilinearly Stiffened Plate
,”
AIAA J.
,
50
(
5
), pp.
1007
1018
.10.2514/1.J050042
44.
Tamijani
,
A. Y.
, and
Kapania
,
R. K.
,
2010
, “
Buckling and Static Analysis of Curvilinearly Stiffened Plates Using Mesh-Free Method
,”
AIAA J.
,
48
(
12
), pp.
2739
2751
.10.2514/1.43917
45.
Tamijani
,
A. Y.
, and
Kapania
,
R. K.
,
2010
, “
Vibration of Plate With Curvilinear Stiffeners Using Mesh-Free Method
,”
AIAA J.
,
48
(
8
), pp.
1569
1581
.10.2514/1.43082
46.
Tamijani
,
A. Y.
,
McQuigg
,
T.
, and
Kapania
,
R. K.
,
2010
, “
Free Vibration Analysis of Curvilinear-Stiffened Plates and Experimental Validation
,”
J. Aircr.
,
47
(
1
), pp.
192
200
.10.2514/1.44613
47.
Martini
,
L.
, and
Vitaliani
,
R.
,
1988
, “
On the Polynomial Convergent Formulation of a C0 Isoparametric Skew Beam Element
,”
Comput. Struct.
,
29
(
3
), pp.
437
449
.10.1016/0045-7949(88)90396-3
48.
Ding
,
Z.
,
1996
, “
Natural Frequencies of Rectangular Plates Using a Set of Static Beam Functions in Rayleigh–Ritz Method
,”
J. Sound Vib.
,
189
(
1
), pp.
81
87
.10.1006/jsvi.1996.0006
49.
Chung
,
H.
,
1981
, “
Free Vibration Analysis of Circular Cylindrical Shells
,”
J. Sound Vib.
,
74
(
3
), pp.
331
350
.10.1016/0022-460X(81)90303-5
50.
Reddy
,
J. N.
,
2003
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
CRC Press
,
Boca Raton, FL
.
51.
Rao
,
P. S.
,
Sinha
,
G.
, and
Mukhopadhyay
,
M.
,
1993
, “
Vibration of Submerged Stiffened Plates by the Finite Element Method
,”
Int. Shipbuild. Prog.
,
40
(
423
), pp.
261
292
.
52.
Samanta
,
A.
, and
Mukhopadhyay
,
M.
,
2004
, “
Free Vibration Analysis of Stiffened Shells by the Finite Element Technique
,”
Eur. J. Mech. A/Solids
,
23
(
1
), pp.
159
179
.10.1016/j.euromechsol.2003.11.001
You do not currently have access to this content.