A class of piezoelectric energy harvester is presented to harness the vibration energy from coupled acoustic-structure systems such as those existing, for example, in aircraft acoustic cabin/flexible fuselage systems. Generic idealization of any of these systems involves the interaction between the dynamics of an acoustic cavity coupled with a flexible structure. Pressure oscillations inside the acoustic cavity induce vibration in the flexible structure and vice versa. Harnessing the associated vibration energy can be utilized to potentially power various vibration, noise, and health monitoring instrumentation. In this paper, the emphasis is placed on harnessing this energy using a special class of piezoelectric energy harvesters coupled with a dynamic magnifier in order to amplify its power output as compared to conventional harvesters. A finite element model (FEM) is developed to predict the performance of this class of harvesters in terms of the mechanical displacements of the flexible structure, the pressure inside the acoustic cavity, and the output electric voltage of the piezoelectric harvester. The FEM is formulated here to analyze a two-dimensional (2D) energy harvesting system which is composed of a rigid acoustic cavity coupled, at one end, with a vibrating base structure to which is attached the piezoelectric energy harvester. The developed FEM is exercised to predict the output electric power for broad interior pressure excitation frequencies. Numerical examples are presented to illustrate the behavior of the harvester and extract the conditions for maximum electric power output of the harvester. The obtained results demonstrate the feasibility of the dynamic magnifier concept as an effective means for enhancing the energy harvesting as compared to conventional harvesters. The presented model can be easily extended and applied to more complex fluid–structure systems such as aircraft and vehicle cabins.

References

References
1.
Priya
,
S.
, and
Inman
,
D. J.
,
2009
,
Energy Harvesting Technologies
,
Springer
,
New York
.
2.
Shafer
,
M. W.
, and
Garcia
,
E.
,
2013
, “
The Power and Efficiency Limits of Piezoelectric Energy Harvesting
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021007
.10.1115/1.4025996
3.
duToit
,
N.
,
Wardle
,
B.
, and
Kim
,
S.-G.
,
2005
, “
Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integr. Ferroelectr.
,
71
(
1
), pp.
121
160
.10.1080/10584580590964574
4.
De Marqui
, Jr.,
C.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Electromechanical Finite Element Model for Piezoelectric Energy Harvesting Plates
,”
J. Sound Vib.
,
327
(
1–2
), pp.
9
25
.10.1016/j.jsv.2009.05.015
5.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.10.1115/1.2890402
6.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
,
18
(
2
), p.
025009
.10.1088/0964-1726/18/2/025009
7.
Morand
,
H. J.-P.
, and
Ohayon
,
R.
,
1995
,
Fluid–Structure Interaction
,
Wiley
,
New York
.
8.
Olson
,
L. G.
, and
Bathe
,
K. J.
,
1985
, “
Analysis of Fluid–Structure Interactions: A Direct Symmetric Coupled Formulation Based on the Fluid Velocity Potential
,”
Comput. Struct.
,
21
(
1–2
), pp.
21
32
.10.1016/0045-7949(85)90226-3
9.
Everstine
,
G. C.
,
1981
, “
A Symmetric Potential Formulation for Fluid–Structure Interaction
,”
J. Sound Vib.
,
79
(
1
), pp.
157
160
.10.1016/0022-460X(81)90335-7
10.
de Souza
,
S.-M.
, and
Pedroso
,
L.-J.
,
2009
, “
Study of Flexible Wall Acoustic Cavities Using Beam Finite Element
,”
Mechanics of Solids in Brazil
, Second International Symposium on Solid Mechanics, Rio de Janeiro, Brazil, Apr. 28–30,
H. S.
da Costa Mattos and M. Alves
, eds.,
Brazilian Society of Mechanical Sciences and Engineering
, Rio de Janeiro, Brazil, pp.
223
237
.
11.
Akl
,
W.
,
El-Sabbagh
,
A.
,
Al-Mitani
,
K.
, and
Baz
,
A.
,
2009
, “
Topology Optimization of a Plate Coupled With Acoustic Cavity
,”
Int. J. Solids Struct.
,
46
(
10
), pp.
2060
2074
.10.1016/j.ijsolstr.2008.05.034
12.
Larbi
,
W.
,
Deü
,
J.-F.
, and
Ohayon
,
R.
,
2006
, “
A New Finite Element Formulation for Internal Acoustic Problems With Dissipative Walls
,”
Int. J. Numer. Methods Eng.
,
68
(
3
), pp.
381
399
.10.1002/nme.1727
13.
Deü
,
J.-F.
,
Larbi
,
W.
, and
Ohayon
,
R.
,
2008
, “
Piezoelectric Structural Acoustic Problems: Symmetric Variational Formulations and Finite Element Results
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
19–20
), pp.
1715
1724
.10.1016/j.cma.2007.04.014
14.
Lee
,
A. J.
,
Wang
,
Y.
, and
Inman
,
D. J.
,
2013
, “
Energy Harvesting of Piezoelectric Stack Actuator From a Shock Event
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
011016
.10.1115/1.4025878
15.
Ro
,
J.
, and
Baz
,
A.
,
1999
, “
Control of Sound Radiation From a Plate Into an Acoustic Cavity Using Active Constrained Layer Damping
,”
Smart Mater. Struct.
,
8
(
3
), pp.
292
300
.10.1088/0964-1726/8/3/302
16.
Liu
,
F.
,
Phipps
,
A.
,
Horowitz
,
S.
,
Ngo
,
K.
,
Cattafesta
,
L.
,
Nishida
,
T.
, and
Sheplak
,
M.
,
2008
, “
Acoustic Energy Harvesting Using an Electromechanical Helmholtz Resonator
,”
J. Acoust. Soc. Am.
,
123
(
4
), pp.
1983
1990
.10.1121/1.2839000
17.
Liu
,
F.
,
Sheplak
,
M.
, and
Cattafesta
, III,
L. N.
,
2007
, “
Development of a Tunable Electromechanical Acoustic Liner for Engine Nacelles
,” NASA Langley Research Center, Hampton, VA, Final Report No. NASA-LaRC Grant No. NNL04AA13A.
18.
Atrah
,
A. B.
, and
Salleh
,
H.
,
2013
, “
Simulation of Acoustic Energy Harvester Using Helmholtz Resonator With Piezoelectric Backplate
,”
Proceedings of the 20th International Congress on Sound and Vibration
(
ICSV20
), Bangkok, Thailand, July 7–11, pp.
30
37
.
19.
Khan
,
F. U.
, and
Izhar
,
E.
,
2013
, “
Acoustic-Based Electrodynamic Energy Harvester for Wireless Sensor Nodes Application
,”
Int. J. Mater. Sci. Eng.
,
1
(
2
), pp.
72
78
.10.12720/ijmse.1.2.72-78
20.
Li
,
B.
,
Laviage
,
A. J.
,
You
,
J. H.
, and
Kim
,
Y. J.
,
2012
,“
Acoustic Energy Harvesting Using Quarter-Wavelength Straight-Tube Resonator
,”
ASME
Paper No. IMECE2012-86989.10.1115/IMECE2012-86989
21.
Moriyama
,
H.
,
Tsuchiya
,
H.
, and
Oshinoya
,
Y.
,
2013
, “
Energy Harvesting With Piezoelectric Element Using Vibroacoustic Coupling Phenomenon
,”
Adv. Acoust. Vib.
,
2013
, p.
126035
.10.1155/2013/126035
22.
Pillai
,
M. A.
, and
Deenadayalan
,
E.
,
2014
, “
A Review of Acoustic Energy Harvesting
,”
Int. J. Precis. Eng. Manuf.
,
15
(
5
), pp.
949
965
.10.1007/s12541-014-0422-x
23.
Aladwani
,
A.
,
Arafa
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2012
, “
Cantilevered Piezoelectric Energy Harvester With a Dynamic Magnifier
,”
ASME J. Vib. Acoust.
,
34
(
3
), p.
031004
.10.1115/1.4005824
24.
Li
,
S.
, and
Zhao
,
D.
,
2013
, “
A Modal Method for Coupled Fluid–Structure Interaction Analysis
,”
J. Comput. Acoust.
,
12
(
2
), pp.
217
231
.10.1142/S0218396X04002262
You do not currently have access to this content.