This paper presents a time-domain approach for a semi-analytical prediction of stability in milling using the Legendre polynomials. The governing equation of motion of milling processes is expressed as a delay-differential equation (DDE) with time periodic coefficients. After the DDE being re-expressed in state-space form, the state vector is approximated by a series of Legendre polynomials. With the help of the Legendre–Gauss–Lobatto (LGL) quadrature, a discrete dynamic map is formulated to approximate the original DDE, and utilized to predict the milling stability based on Floquet theory. With numerical examples illustrating the efficiency and accuracy of the proposed approach, an experimental example validates the method.

References

References
1.
Wiercigroch
,
M.
, and
Budak
,
E.
,
2001
, “
Sources of Nonlinearities, Chatter Generation and Suppression in Metal Cutting
,”
Philos. Trans. R. Soc. A
,
359
(
1781
), pp.
663
693
.10.1098/rsta.2000.0750
2.
Altintas
,
Y.
,
2000
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge, UK
.
3.
Schmitz
,
T. L.
, and
Smith
,
K. S.
,
2008
,
Machining Dynamics: Frequency Response to Improved Productivity
,
Springer
,
New York
.
4.
Altintas
,
Y.
, and
Weck
,
M.
,
2004
, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann. Manuf. Technol.
,
53
(
2
), pp.
619
642
.10.1016/S0007-8506(07)60032-8
5.
Smith
,
S.
, and
Tlusty
,
J.
,
1991
, “
An Overview of Modeling and Simulation of the Milling Process
,”
J. Eng. Ind.
,
113
(
2
), pp.
169
175
.10.1115/1.2899674
6.
Campomanes
,
M. L.
, and
Altintas
,
Y.
,
2003
, “
A Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
416
422
.10.1115/1.1580852
7.
Minis
,
I.
, and
Yanushevsky
,
R.
,
1993
, “
A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling
,”
J. Eng. Ind.
,
115
(
1
), pp.
1
8
.10.1115/1.2901633
8.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
357
362
.10.1016/S0007-8506(07)62342-7
9.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,”
ASME J. Dyn. Syst. Meas. Control
,
120
(
1
), pp.
22
30
.10.1115/1.2801317
10.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
.10.1115/1.1765139
11.
Altintas
,
Y.
,
Engin
,
S.
, and
Budak
,
E.
,
1999
, “
Analytical Stability Prediction and Design of Variable Pitch Cutters
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
173
178
.10.1115/1.2831201
12.
Altintas
,
Y.
,
2001
, “
Analytical Prediction of Three Dimensional Chatter Stability in Milling
,”
JSME Int. J. Ser. C
,
44
(
3
), pp.
717
723
.10.1299/jsmec.44.717
13.
Ozturk
,
E.
, and
Budak
,
E.
,
2010
, “
Dynamics and Stability of Five-Axis Ball-End Milling
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021003
.10.1115/1.4001038
14.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.10.1002/nme.505
15.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.10.1002/nme.1061
16.
Insperger
,
T.
,
Stépán
,
G.
, and
Turi
,
J.
,
2008
, “
On the Higher-Order Semi-Discretizations for Periodic Delayed Systems
,”
J. Sound Vib.
,
313
(
1–2
), pp.
334
341
.10.1016/j.jsv.2007.11.040
17.
Long
,
X. H.
, and
Balachandran
,
B.
,
2007
, “
Stability Analysis for Milling Process
,”
Nonlinear Dyn.
,
49
(
3
), pp.
349
359
.10.1007/s11071-006-9127-8
18.
Long
,
X. H.
,
Balachandran
,
B.
, and
Mann
,
B. P.
,
2007
, “
Dynamics of Milling Processes With Variable Time Delays
,”
Nonlinear Dyn.
,
47
(
1–3
), pp.
49
63
.10.1007/s11071-006-9058-4
19.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi-Discretization for Time-delay Systems: Stability and Engineering Applications
,
Springer-Verlag
,
New York
.
20.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
,
2003
, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
220
225
.10.1115/1.1556860
21.
Mann
,
B. P.
,
Young
,
K. A.
,
Schmitz
,
T. L.
, and
Dilley
,
D. N.
,
2005
, “
Simultaneous Stability and Surface Location Error Predictions in Milling
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
446
453
.10.1115/1.1948394
22.
Mann
,
B. P.
,
Edes
,
B. T.
,
Easley
,
S. J.
,
Young
,
K. A.
, and
Ma
,
K.
,
2008
, “
Chatter Vibration and Surface Location Error Prediction for Helical End Mills
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
350
361
.10.1016/j.ijmachtools.2007.10.003
23.
Butcher
,
E. A.
,
Ma
,
H.
,
Bueler
,
E.
,
Averina
,
V.
, and
Szabo
,
Z.
,
2004
, “
Stability of Linear Time-Periodic Delay-Differential Equations Via Chebyshev Polynomials
,”
Int. J. Numer. Methods Eng.
,
59
(
7
), pp.
895
922
.10.1002/nme.894
24.
Butcher
,
E. A.
,
Bobrenkov
,
O. A.
,
Bueler
,
E.
, and
Nindujarla
,
P.
,
2009
, “
Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), p.
031003
.10.1115/1.3124088
25.
Khasawneh
,
F. A.
,
Bobrenkov
,
O. A.
,
Mann
,
B. P.
, and
Butcher
,
E. A.
,
2012
, “
Investigation of Period-Doubling Islands in Milling With Simultaneously Engaged Helical Flutes
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021008
.10.1115/1.4005022
26.
Asl
,
F. M.
, and
Ulsoy
,
A. G.
,
2003
, “
Analysis of a System of Linear Delay Differential Equations
,”
ASME J. Dyn. Syst. Meas. Control
,
125
(
2
), pp.
215
223
.10.1115/1.1568121
27.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2007
, “
Delay Differential Equations Via the Matrix Lambert W Function and Bifurcation Analysis: Application to Machine Tool Chatter
,”
Math. Biosci. Eng.
,
4
(
2
), pp.
355
368
.10.3934/mbe.2007.4.355
28.
Olgac
,
N.
, and
Sipahi
,
R.
,
2005
, “
A Unique Methodology for Chatter Stability Mapping in Simultaneous Machining
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
791
800
.10.1115/1.2037086
29.
Olgac
,
N.
, and
Sipahi
,
R.
,
2007
, “
Dynamics and Stability of Variable-Pitch Milling
,”
J. Vib. Control
,
13
(
7
), pp.
1031
1043
.10.1177/1077546307078754
30.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
.10.1016/j.ijmachtools.2010.01.003
31.
Quo
,
Q.
,
Sun
,
Y.
, and
Jiang
,
Y.
,
2012
, “
On the Accurate Calculation of Milling Stability Limits Using Third-Order Full-Discretization Method
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
61
66
.10.1016/j.ijmachtools.2012.05.001
32.
Liu
,
Y.
,
Zhang
,
D.
, and
Wu
,
B.
,
2012
, “
An Efficient Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
63
, pp.
44
48
.10.1016/j.ijmachtools.2012.07.008
33.
Niu
,
J.
,
Ding
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2014
, “
Runge–Kutta Methods for a Semi-Analytical Prediction of Milling Stability
,”
Nonlinear Dyn.
,
76
(
1
), pp.
289
304
.10.1007/s11071-013-1127-x
34.
Li
,
M.
,
Zhang
,
G.
, and
Huang
,
Y.
,
2013
, “
Complete Discretization Scheme for Milling Stability Prediction
,”
Nonlinear Dyn.
,
71
(
1–2
), pp.
187
199
.10.1007/s11071-012-0651-4
35.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
Numerical Integration Method for Prediction of Milling Stability
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031005
.10.1115/1.4004136
36.
Eksioglu
,
C.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2012
, “
Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061006
.10.1115/1.4007622
37.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
Milling Stability Analysis Using the Spectral Method
,”
Sci. China Technol. Sci.
,
54
(
12
), pp.
3130
3136
.10.1007/s11431-011-4611-x
38.
Compeán
,
F. I.
,
Olvera
,
D.
,
Campa
,
F. J.
,
López De Lacalle
,
L. N.
,
Elías-Zúñiga
,
A.
, and
Rodríguez
,
C. A.
,
2012
, “
Characterization and Stability Analysis of a Multivariable Milling Tool by the Enhanced Multistage Homotopy Perturbation Method
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
27
33
.10.1016/j.ijmachtools.2012.01.010
39.
Olvera
,
D.
,
Elías-Zúñiga
,
A.
,
Martínez-Alfaro
,
H.
,
López de Lacalle
,
L. N.
,
Rodríguez
,
C. A.
, and
Campa
,
F. J.
,
2014
, “
Determination of the Stability Lobes in Milling Operations Based on Homotopy and Simulated Annealing Techniques
,”
Mechatronics
,
24
(
3
), pp.
177
185
.10.1016/j.mechatronics.2014.01.009
40.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
Stability Analysis of Milling Via the Differential Quadrature Method
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
044502
.10.1115/1.4024539
41.
Wang
,
Z. Q.
, and
Guo
,
B. Y.
,
2012
, “
Legendre–Gauss–Radau Collocation Method for Solving Initial Value Problems of First Order Ordinary Differential Equations
,”
J. Sci. Comput.
,
52
(
1
), pp.
226
255
.10.1007/s10915-011-9538-7
42.
Shen
,
J.
,
Tang
,
T.
, and
Wang
,
L. L.
,
2011
,
Spectral Methods: Algorithms, Analysis and Applications
,
Springer-Verlag
,
Berlin, Germany
.
43.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1991
,
Topics in Matrix Analysis
,
Cambridge University Press
,
Cambridge, UK
.10.1017/CBO9780511840371
44.
Farkas
,
M.
,
1994
,
Periodic Motions
,
Springer-Verlag
,
New York
.10.1007/978-1-4757-4211-4
45.
Henninger
,
C.
, and
Eberhard
,
P.
,
2008
, “
Improving the Computational Efficiency and Accuracy of the Semi-Discretization Method for Periodic Delay-Differential Equations
,”
Eur. J. Mech. A
,
27
(
6
), pp.
975
985
.10.1016/j.euromechsol.2008.01.006
46.
Ding
,
Y.
,
2011
, “
Milling Dynamics—Stability Analysis Methods and Applications
,” Ph.D. thesis, Shanghai Jiao Tong University, Shanghai, China.
You do not currently have access to this content.