This paper presents a model for an elastomeric isolation system consisting of a three degree-of-freedom (DOF) rigid body assembled to a frame through multiple isolators. Each elastomeric isolator is either represented by a Maxwell–Voigt (MV) model consisting of two Maxwell elements or by a Maxwell ladder (ML) model consisting of three Maxwell elements. The MV models and the ML models are characterized by using experimental data that are collected at multiple excitation frequencies. The characterized models are evaluated and used to simulate the performance of the isolation system. The models developed in this paper are capable of representing frequency-dependent behavior that is exhibited by elastomeric isolators and the overall isolation system. Furthermore, the proposed model is capable of directly associating the behavior of the isolation system with physical and geometrical properties of each isolator. The proposed model is expected to be a useful tool for the analysis and design optimization of elastomeric isolation systems. Most of the isolation systems in practical applications exhibit multiple DOF, this model will be particularly useful in such applications since it does not constrain motion to translation only. This is a shortcoming of the models in the current literature that the proposed model attempts to overcome.

References

References
1.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.10.1016/j.jsv.2008.01.014
2.
Rivin
,
E. I.
,
2003
,
Passive Vibration Isolation
,
ASME Press
,
New York
.
3.
Zhang
,
J.
, and
Richards
,
C. M.
,
2007
, “
Parameter Identification of Analytical and Experimental Rubber Isolators Represented by Maxwell Models
,”
Mech. Syst. Signal Process.
,
21
(
7
), pp.
2814
2832
.10.1016/j.ymssp.2007.02.007
4.
Zhang
,
J.
, and
Richards
,
C. M.
,
2006
, “
Dynamic Analysis and Parameter Identification of a Single Mass Elastomeric Isolation System Using a Maxwell–Voigt Model
,”
ASME J. Vib. Acoust.
,
128
(
6
), pp.
713
721
.10.1115/1.2345676
5.
Renaud
,
F.
,
Dion
,
J.
,
Chevallier
,
G.
,
Tawfiq
,
I.
, and
Lemaire
,
R.
,
2011
, “
A New Identification Method of Viscoelastic Behavior: Application to the Generalized Maxwell Model
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
991
1010
.10.1016/j.ymssp.2010.09.002
6.
Lu
,
Y. C.
,
Anderson
,
M.
, and
Nash
,
D.
,
2007
, “
Characterize the High-Frequency Dynamic Properties of Elastomers Using Fractional Calculus for FEM
,”
SAE
Technical Paper No. 2007-01-2417. 10.4271/2007-01-2417
7.
Hofer
,
P.
, and
Lion
,
A.
,
2009
, “
Modelling of Frequency- and Amplitude-Dependent Material Properties of Filler-Reinforced Rubber
,”
J. Mech. Phys. Solids
,
57
(
3
), pp.
500
520
.10.1016/j.jmps.2008.11.004
8.
Shaska
,
K.
,
Ibrahim
,
R. A.
, and
Gibson
,
R. F.
,
2007
, “
Influence of Excitation Amplitude on the Characteristics of Nonlinear Butyl Rubber Isolators
,”
Nonlinear Dyn.
,
47
(
1–3
), pp.
83
104
. 10.1007/s11071-006-9060-x
9.
Ooi
,
L. E.
, and
Ripin
,
Z. M.
,
2011
, “
Dynamic Stiffness and Loss Factor Measurement of Engine Rubber Mount by Impact Test
,”
Mater. Des.
,
32
(
4
), pp.
1880
1887
.10.1016/j.matdes.2010.12.015
10.
Kulik
,
V. M.
,
Semenov
,
B. N.
,
Boiko
,
A. V.
,
Seoudi
,
B. M.
,
Chun
,
H. H.
, and
Lee
,
I.
,
2009
, “
Measurement of Dynamic Properties of Viscoelastic Materials
,”
Exp. Mech.
,
49
(
3
), pp.
417
425
.10.1007/s11340-008-9165-x
11.
Adhikari
,
S.
, and
Pascual
,
B.
,
2011
, “
Iterative Methods for Eigenvalues of Viscoelastic Systems
,”
ASME J. Vib. Acoust.
,
133
(
2
), p.
021002
.10.1115/1.4002220
12.
Kaul
,
S.
,
2012
, “
Dynamic Modeling and Analysis of Mechanical Snubbing
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021020
.10.1115/1.4005012
13.
Banks
,
H. T.
,
Pinter
,
G. A.
,
Potter
,
L. K.
,
Gaitens
,
M. J.
, and
Yanyo
,
L. C.
,
1999
, “
Modeling of Nonlinear Hysteresis in Elastomers Under Uniaxial Tension
,”
J. Intell. Mater. Syst. Struct.
,
10
(
2
), pp.
116
134
.10.1177/1045389X9901000205
14.
Ackleh
,
A. S.
,
Banks
,
H. T.
, and
Pinter
,
G. A.
,
2002
, “
Well-Posedness Results for Models of Elastomers
,”
J. Math. Anal. Appl.
,
268
(
2
), pp.
440
456
.10.1006/jmaa.2000.7281
15.
Jazar
,
G. N.
,
Narimani
,
A.
,
Golnaraghi
,
M. F.
, and
Swanson
,
D. A.
,
2003
, “
Practical Frequency and Time Optimal Design of Passive Linear Vibration Isolation Mounts
,”
Veh. Syst. Dyn.
,
39
(
6
), pp.
437
466
.10.1076/vesd.39.6.437.14595
16.
Lewandowski
,
R.
, and
Chorazyczewski
,
B.
,
2010
, “
Identification of the Parameters of the Kelvin–Voigt and the Maxwell Fractional Models, Used to Modeling of Viscoelastic Dampers
,”
Comput. Struct.
,
88
(
1–2
), pp.
1
17
.10.1016/j.compstruc.2009.09.001
17.
Sjoberg
,
M.
, and
Kari
,
L.
,
2002
, “
Nonlinear Behavior of a Rubber Isolator System Using Fractional Derivatives
,”
Veh. Syst. Dyn.
,
37
(
3
), pp.
217
236
.10.1076/vesd.37.3.217.3532
18.
Angeli
,
P.
,
Russo
,
G.
, and
Paschini
,
A.
,
2013
, “
Carbon Fiber-Reinforced Rectangular Isolators With Compressible Elastomer: Analytical Solution for Compression and Bending
,”
Int. J. Solids Struct.
,
50
(
22–23
), pp.
3519
3527
.10.1016/j.ijsolstr.2013.06.016
19.
Chang
,
T. S.
, and
Singh
,
M. P.
,
2009
, “
Mechanical Model Parameters for Viscoelastic Dampers
,”
J. Eng. Mech.
,
135
(
6
), pp.
581
584
.10.1061/(ASCE)0733-9399(2009)135:6(581)
20.
Peng
,
Z. K.
, and
Lang
,
Z. Q.
,
2008
, “
The Effects of Nonlinearity on the Output Frequency Response of a Passive Engine Mount
,”
J. Sound Vib.
,
318
(
1–2
), pp.
313
328
.10.1016/j.jsv.2008.04.016
21.
Peng
,
Z. K.
,
Meng
,
G.
,
Lang
,
Z. Q.
,
Zhang
,
W. M.
, and
Chu
,
F. L.
,
2012
, “
Study of the Effects of Cubic Nonlinear Damping on Vibration Isolations Using Harmonic Balance Method
,”
Int. J. Nonlinear Mech.
,
47
(
10
), pp.
1073
1080
.10.1016/j.ijnonlinmec.2011.09.013
22.
Park
,
S. W.
,
2001
, “
Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control
,”
Int. J. Solids Struct.
,
38
(
44–45
), pp.
8065
8092
.10.1016/S0020-7683(01)00026-9
23.
MathWorks
,
2007
, “
MATLAB User Guide
,”
MathWorks
,
Natick, MA
.
24.
Sprague
,
M. A.
, and
Geers
,
T. L.
,
2006
, “
A Spectral-Element/Finite-Element Analysis of a Ship-Like Structure Subjected to an Underwater Explosion
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
17–18
), pp.
2149
2167
.10.1016/j.cma.2005.03.007
You do not currently have access to this content.