Here, sound radiation characteristics of a rectangular plate having a side crack of different crack lengths, orientations, and positions are studied considering clamped boundary conditions. First, a free and forced vibration response analysis of a cracked plate is done using the Ritz method. Orthogonal polynomials are used for faster convergence and some corner functions are used to generate the effect of a crack. Radiated sound power and radiation efficiency of the cracked plate are computed by the quadruple integration. A convergence test of radiation efficiency is carried out to fix the number of polynomials and corner functions in the analysis. It is found that the radiation efficiency and radiated sound power computed by the Ritz method are close to the same obtained from the boundary element method (BEM). The natural frequencies computed using the Ritz method are also found to be close to that obtained from the finite element method (FEM). The radiation efficiency curves of different modes are shown for a change in crack length, orientation and position. Finally, the variations of normalized sound power are shown to be due to a change in the crack parameters.

References

1.
Maidanik
,
G.
,
1962
, “
Response of Ribbed Panels to Reverberant Acoustic Fields
,”
J. Acoust. Soc. Am.
,
34
(
6
), pp.
809
826
.10.1121/1.1918200
2.
Wallace
,
C. E.
,
1972
, “
Radiation Resistance of Rectangular Panel
,”
J. Acoust. Soc. Am.
,
51
(
1
), pp.
946
952
.10.1121/1.1912943
3.
Leppington
,
F. G.
,
Broadbent
,
E. G.
, and
Heron
,
K. H.
,
1982
, “
The Acoustic Radiation Efficiency of Rectangular Panels
,”
Proc. R. Soc. London, Ser. A
,
382
(1783), pp.
245
271
.10.1098/rspa.1982.0100
4.
Williams
,
E. G.
, and
Maynard
,
J. D.
,
1982
, “
Numerical Evaluation of the Rayleigh Integral for Planar Radiators Using the FFT
,”
J. Acoust. Soc. Am.
,
72
(
6
), pp.
2020
2030
.10.1121/1.388633
5.
Williams
,
E. G.
,
1983
, “
A Series Expansion of the Acoustic Power Radiated From Planar Sources
,”
J. Acoust. Soc. Am.
,
73
(
5
), pp.
1520
1524
.10.1121/1.389412
6.
Williams
,
E. G.
,
1983
, “
Numerical Evaluation of the Radiation From Unbaffled, Finite Plates Using the FFT
,”
J. Acoust. Soc. Am.
,
74
(
1
), pp.
343
347
.10.1121/1.389683
7.
Berry
,
A.
,
Guyader
,
J. L.
, and
Nicolas
,
J.
,
1990
, “
A General Formulation for the Sound Radiation From Rectangular, Baffled Plates With Arbitrary Boundary Conditions
,”
J. Acoust. Soc. Am.
,
88
(
6
), pp.
2792
2802
.10.1121/1.399682
8.
Berry
,
A.
,
1994
, “
A New Formulation for the Vibrations and Sound Radiation of Fluid-Loaded Plates With Elastic Boundary Conditions
,”
J. Acoust. Soc. Am.
,
96
(
2
), pp.
889
901
.10.1121/1.410264
9.
Atalla
,
N.
,
Nicolas
,
J.
, and
Gauthier
,
C.
,
1996
, “
Acoustic Radiation of an Unbaffled Vibrating Plate With General Elastic Boundary Conditions
,”
J. Acoust. Soc. Am.
,
99
(
3
), pp.
1484
1494
.10.1121/1.414727
10.
Laulagnet
,
B.
,
1998
, “
Sound Radiation by a Simply Supported Unbaffled Plate
,”
J. Acoust. Soc. Am.
,
103
(
5
), pp.
2451
2462
.10.1121/1.422765
11.
Xie
,
G. D.
,
Thompson
,
J.
, and
Jones
,
C. J. C.
,
2005
, “
The Radiation Efficiency of Baffled Plates and Strips
,”
J. Sound Vib.
,
280
(
1–2
), pp.
181
209
.10.1016/j.jsv.2003.12.025
12.
Langley
,
R. S.
,
2007
, “
Numerical Evaluation of the Acoustic Radiation From Planar Structures With General Baffle Conditions Using Wavelets
,”
J. Acoust. Soc. Am.
,
121
(
2
), pp.
766
777
.10.1121/1.2405125
13.
William
,
M. L.
,
1951
, “
Surface Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates Under Bending
,”
1st U.S. National Congress of Applied Mechanics
,
Chicago, IL
, June 11–16, pp.
325
329
.
14.
Huang
,
C. S.
,
Leissa
,
A. W.
, and
McGee
,
O. G.
,
1993
, “
Exact Analytical Solutions for the Vibrations of Sectorial Plates With Simply-Supported Radial Edges
,”
ASME J. Appl. Mech.
,
60
(2), pp.
478
483
.10.1115/1.2900818
15.
Bhat
,
R. B.
,
1985
, “
Natural Frequencies of Rectangular Plates Using Characteristic Orthogonal Polynomials in Rayleigh–Ritz Method
,”
J. Sound Vib.
,
102
(
4
), pp.
493
499
.10.1016/S0022-460X(85)80109-7
16.
Huang
,
C. S.
, and
Leissa
,
A. W.
,
2009
, “
Vibration Analysis of Rectangular Plates With Side Cracks Via the Ritz Method
,”
J. Sound Vib.
,
323
(
3–5
), pp.
974
988
.10.1016/j.jsv.2009.01.018
17.
Huang
,
C. S.
,
Leissa
,
A. W.
, and
Li
,
R. S.
,
2011
, “
Accurate Vibration Analysis of Thick, Cracked Rectangular Plates
,”
J. Sound Vib.
,
330
(
9
), pp.
2079
2093
.10.1016/j.jsv.2010.11.007
18.
Bose
,
T.
, and
Mohanty
,
A. R.
,
2013
, “
Vibration Analysis of a Rectangular Thin Isotropic Plate With a Part-Through Surface Crack of Arbitrary Orientation and Position
,”
J. Sound Vib.
,
332
(
26
), pp.
7123
7141
.10.1016/j.jsv.2013.08.017
19.
Saito
,
A.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2009
, “
Estimation and Veering Analysis of Nonlinear Resonant Frequencies of Cracked Plates
,”
J. Sound Vib.
,
326
(
3–5
), pp.
725
739
.10.1016/j.jsv.2009.05.009
20.
Wolfram
,
2008
, “
Mathematics and Algorithms
,” Wolfram Research Inc., Champaign, IL.
21.
van Engelen
,
A. J.
,
2009
, “
Sound Radiation of a Baffled Plate; Theoretical and Numerical Approach
,” Eindhoven University of Technology, Eindhoven, The Netherlands, Research Report No. DCT 2009.005.
22.
ABAQUS Inc.
,
2009
,
abaqus Analysis User's Manual, Release 6.9 Documentation for ABAQUS Dassault Systemes, Johnston, RI
.
23.
Kirkup
,
S. M.
,
2007
,
The Boundary Element Method in Acoustics
, Integrated Sound Software, Hebden Bridge, UK.
You do not currently have access to this content.