Vibroacoustic characteristics of multidirectional stiffened laminated plates with or without compliant layers are explored in the wavenumber and spatial domains with the help of the two-dimensional continuous Fourier transform and discrete inverse fast Fourier transform. Implicit equations of motion for the arbitrary angle ply laminated plates are derived from the three-dimensional higher order and Reddy third order shear deformation plate theories. The expressions of acoustic power of the stiffened laminated plates with or without complaint layers are formulated in the wavenumber domain, which is a significant method to calculate acoustic power of the stiffened plates with multiple sets of cross stiffeners. Vibroacoustic comparisons of the stiffened laminated plates are made in terms of the transverse displacement spectra, forced responses, acoustic power, and input power according to the first order, Reddy third order, and three-dimensional higher order plate theories. Sound reduction profiles of compliant layers are further examined by the theoretical deductions. This study shows the feasibility and high efficiency of the first order and Reddy third order plate theories in the broad frequency range and allows a better understanding the principal mechanisms of acoustic power radiated from multidirectional stiffened laminated composite plates with compliant layers, which has not been adequately addressed in its companion paper. (Cao and Hua, 2012, “Sound Radiation From Shear Deformable Stiffened Laminated Plates With Multiple Compliant Layers,” ASME J. Vib. Acoust., 134(5), p. 051001.)

References

References
1.
Cao
,
X. T.
, and
Hua
,
H. X.
,
2012
, “
Sound Radiation From Shear Deformable Stiffened Laminated Plates With Multiple Compliant Layers
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
051001
.10.1115/1.4006233
2.
Thai
,
H. T.
, and
Choi
,
D. H.
,
2013
, “
A Simple First-Order Shear Deformation Theory for Laminated Composite Plates
,”
Compos. Struct.
,
106
, pp.
754
763
.10.1016/j.compstruct.2013.06.013
3.
Thai
,
H. T.
, and
Choi
,
D. H.
,
2011
, “
A Refined Plate Theory for Functionally Graded Plates Resting on Elastic Foundation
,”
Compos. Sci. Technol.
,
71
(
16
), pp.
1850
1858
.10.1016/j.compscitech.2011.08.016
4.
Mantari
,
J. L.
,
Oktem
,
A. S.
, and
Guedes Soares
,
C.
,
2011
, “
Static and Dynamic Analysis of Laminated Composite and Sandwich Plates and Shells by Using a New Higher-Order Shear Deformation Theory
,”
Compos. Struct.
,
94
(
1
), pp.
37
49
.10.1016/j.compstruct.2011.07.020
5.
Senjanović
,
I.
,
Vladimir
,
N.
, and
Tomić
,
M.
,
2013
, “
An Advanced Theory of Moderately Thick Plate Vibrations
,”
J. Sound Vib.
,
332
(
7
), pp.
1868
1880
.10.1016/j.jsv.2012.11.022
6.
Kant
,
T.
, and
Swaminathan
,
K.
,
2001
, “
Analytical Solutions for Free Vibration of Laminated Composite and Sandwich Plates Based on a Higher-Order Refined Theory
,”
Compos. Struct.
,
53
(
1
), pp.
73
85
.10.1016/S0263-8223(00)00180-X
7.
Aydogdu
,
M.
,
2009
, “
A New Shear Deformation Theory for Laminated Composite Plates
,”
Compos. Struct.
,
89
(
1
), pp.
94
101
.10.1016/j.compstruct.2008.07.008
8.
Hasheminejad
,
S. M.
, and
Ahamdi-Savadkoohi
,
A.
,
2010
, “
Vibro-Acoustic Behavior of a Hollow FGM Cylinder Excited by On-Surface Mechanical Drives
,”
Compos. Struct.
,
92
(
1
), pp.
86
96
.10.1016/j.compstruct.2009.06.014
9.
Cao
,
X. T.
,
Ma
,
C.
, and
Hua
,
H. X.
,
2013
, “
Acoustic Radiation From Thick Laminated Cylindrical Shells With Sparse Cross Stiffeners
,”
ASME J. Vibr. Acoust.
,
135
(
3
), p.
0310091
10.1115/1.4023142.
10.
Daneshjou
,
K.
,
Shokrieh
,
M. M.
,
Moghaddam
,
M. G.
, and
Talebitooti
,
R.
,
2010
, “
Analytical Model of Sound Transmission Through Relatively Thick FGM Cylindrical Shells Considering Third Order Shear Deformation Theory
,”
Compos. Struct.
,
93
(
1
), pp.
67
78
.10.1016/j.compstruct.2010.06.014
11.
Shen
,
C.
,
Xin
,
F. X.
,
Cheng
,
L.
, and
Lu
,
T. J.
,
2013
, “
Sound Radiation of Orthogonally Stiffened Laminated Composite Plates Under Airborne and Structure Borne Excitations
,”
Compos. Sci. Technol.
,
84
, pp.
51
57
.10.1016/j.compscitech.2013.05.006
12.
Reddy
,
J. N.
, and
Kim
,
J.
,
2012
, “
A Nonlinear Modified Couple Stress-Based Third-Order Theory of Functionally Graded Plates
,”
Compos. Struct.
,
94
(
3
), pp.
1128
1143
.10.1016/j.compstruct.2011.10.006
13.
Khalili
,
S. M. R.
,
Davar
,
A.
, and
Malekzadeh Fard
,
K.
,
2012
, “
Free Vibration Analysis of Homogeneous Isotropic Circular Cylindrical Shells Based on a New Three-Dimensional Refined Higher-Order Theory
,”
Int. J. Mech. Sci.
,
56
(
1
), pp.
1
25
.10.1016/j.ijmecsci.2011.11.002
14.
Mace
,
B. R.
,
1980
, “
Sound Radiation From a Plate Reinforced by Two Sets of Parallel Stiffeners
,”
J. Sound Vib.
,
71
(
3
), pp.
435
441
.10.1016/0022-460X(80)90425-3
15.
Mace
,
B. R.
,
1981
, “
Sound Radiation From Fluid Loaded Orthogonally Stiffened Plates
,”
J. Sound Vib.
,
79
(
3
), pp.
439
452
.10.1016/0022-460X(81)90321-7
16.
Mace
,
B. R.
,
1996
, “
The Vibration of Plates on Two-Dimensionally Periodic Point Supports
,”
J. Sound Vib.
,
192
(
3
), pp.
629
643
.10.1006/jsvi.1996.0211
17.
Cray
,
B. A.
,
1994
, “
Acoustic Radiation From Periodic and Sectionally Aperiodic Rib-Stiffened Plates
,”
J. Acoust. Soc. Am.
,
95
(
1
), pp.
256
264
.10.1121/1.408358
18.
Yin
,
X. W.
,
Liu
,
L. J.
,
Hua
,
H. X.
, and
Shen
,
R. Y.
,
2009
, “
Acoustic Radiation From an Infinite Laminated Composite Cylindrical Shell With Doubly Periodic Rings
,”
ASME J. Vib. Acoust.
131
(
1
), p.
011005
.10.1115/1.2980376
19.
Cao
,
X. T.
,
Hua
,
H. X.
, and
Zhang
,
Z. Y.
,
2011
, “
Sound Radiation From Shear Deformable Stiffened Laminated Plates
,”
J. Sound Vib.
,
330
(
16
), pp.
4047
4063
.10.1016/j.jsv.2011.04.016
20.
Brunskog
,
J.
, and
Hammer
,
P.
,
2003
, “
Prediction Model for the Impact Sound Level of Lightweight Floors
,”
Acta Acust.
,
89
(
2
), pp.
309
322
.
21.
Ghinet
,
S.
, and
Atalla
,
N.
,
2011
, “
Modeling Thick Composite Laminate and Sandwich Structures With Linear Viscoelastic Damping
,”
Comput. Struct.
,
89
(
15–16
), pp.
1547
1561
.10.1016/j.compstruc.2010.09.008
22.
Williams
,
E. G.
,
1999
,
Fourier Acoustics Sound Radiation and Nearfield Acoustical Holography
,
Academic Press
,
San Diego, CA
.
23.
Xin
,
F. X.
, and
Lu
,
T. J.
,
2010
, “
Sound Radiation of Orthogonally Rib-Stiffened Sandwich Structures With Cavity Absorption
,”
Compos. Sci. Technol.
,
70
(
15
), pp.
2198
2206
.10.1016/j.compscitech.2010.09.001
24.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
CRC Press
,
Boca Raton, FL
.
25.
Kheirikhah
,
M. M.
,
Khalili
,
S. M. R.
, and
Malekzadeh Fard
,
K.
,
2012
, “
Biaxial Buckling Analysis of Soft-Core Composite Sandwich Plates Using Improved High-Order Theory
,”
Eur. J. Mech., A/Solids
,
31
(
1
), pp.
54
66
.10.1016/j.euromechsol.2011.07.003
26.
Carrera
,
E.
,
1999
, “
A Study of Transverse Normal Stress Effect on Vibration of Multilayered Plates and Shells
,”
J. Sound Vib.
,
225
(
5
), pp.
803
829
.10.1006/jsvi.1999.2271
27.
Kant
,
T.
, and
Swaminathan
,
K.
,
2001
, “
Free Vibration of Isotropic, Orthotropic, and Multilayer Plates Based on Higher Order Refined Theories
,”
J. Sound Vib.
,
241
(
2
), pp.
319
327
.10.1006/jsvi.2000.3232
28.
Shiyekar
,
S. M.
, and
Kant
,
T.
,
2011
, “
Higher Order Shear Deformation Effects on Analysis of Laminates With Piezoelectric Fibre Reinforced Composite Actuators
,”
Compos. Struct.
,
93
(
12
), pp.
3252
3261
. 10.1016/j.compstruct.2011.05.016
29.
Hull
,
A. J.
, and
Welch
,
J. R.
,
2010
, “
Elastic Response of an Acoustic Coating on a Rib-Stiffened Plate
,”
J. Sound Vib.
,
329
(
20
), pp.
4192
4211
.10.1016/j.jsv.2010.04.012
30.
Kapuria
,
S.
, and
Nath
,
J. K.
,
2013
, “
Coupled Global-Local and Zigzag-Local Laminate Theories for Dynamic Analysis of Piezoelectric Laminated Plates
,”
J. Sound Vib.
,
332
(
2
), pp.
306
325
. 10.1016/j.jsv.2012.08.002
31.
Meng
,
H.
,
Wen
,
J.
,
Zhao
,
H.
,
Lv
,
L.
, and
Wen
,
X.
,
2012
, “
Analysis of Absorption Performances of Anechoic Layers With Steel Plate Backing
,”
J. Acoust. Soc. Am.
,
132
(
1
), pp.
69
75
.10.1121/1.4728198
32.
Ivansson
,
S. M.
,
2006
, “
Sound Absorption by Viscoelastic Coatings with Periodically Distributed Cavities
,”
J. Acoust. Soc. Am.
,
119
(
6
), pp.
3558
3567
.10.1121/1.2190165
33.
Zhao
,
H.
,
Liu
,
Y.
,
Wen
,
J.
,
Yu
,
D.
, and
Wen
,
X.
,
2007
, “
Tri-Component Phononic Crystals for Underwater Anechoic Coatings
,”
Phys. Lett. A
,
367
(
3
), pp.
224
232
. 10.1016/j.physleta.2007.02.048
34.
Tao
,
M.
,
Tang
,
W. L.
, and
Hua
,
H. X.
,
2010
, “
Noise Reduction Analysis of an Underwater Decoupling Layer
,”
ASME J. Vibr. Acoust.
,
132
(
6
), p.
061006
.10.1115/1.4002126
35.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Solid. I. Low-Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
178
.10.1121/1.1908239
36.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
179
191
.10.1121/1.1908241
37.
Biot
,
M. A.
,
1962
, “
Generalized Theory of Acoustic Propagation in Porous Dissipative Media
,”
J. Acoust. Soc. Am.
,
34
(
5
), pp.
1254
1264
.10.1121/1.1918315
38.
Alba
,
J.
,
Ramis
,
J.
, and
Sánchez-Morcillo
,
V. J.
,
2004
, “
Improvement of the Prediction of Transmission Loss of Double Partitions With Cavity Absorption by Minimization Techniques
,”
J. Sound Vib.
,
273
(
4–5
), pp.
793
804
.10.1016/S0022-460X(03)00783-1
39.
Yoon
,
G. H.
,
2013
, “
Acoustic Topology Optimization of Fibrous Material With Delany–Bazley Empirical Material Formulation
,”
J. Sound Vib.
,
332
(
5
), pp.
1172
1187
.10.1016/j.jsv.2012.10.018
40.
Allard
,
J. F.
, and
Champoux
,
Y.
,
1992
, “
New Empirical Equations for Sound Propagation in Rigid Frame Fibrous Materials
,”
J. Acoust. Soc. Am.
,
91
(
6
), pp.
3346
3353
.10.1121/1.402824
41.
Bolton
,
J. S.
,
Shiau
,
N. M.
, and
Kang
,
Y. J.
,
1996
, “
Sound Transmission Through Multi-Panel Structures Lined With Elastic Porous Materials
,”
J. Sound Vib.
,
191
(
3
), pp.
317
347
.10.1006/jsvi.1996.0125
42.
Faverjon
,
B.
, and
Soize
,
C.
,
2004
, “
Equivalent Acoustic Impedance Model. Part 1: Experiments and Semi-Physical Model
,”
J. Sound Vib.
,
276
(
3–5
), pp.
571
592
.10.1016/j.jsv.2003.08.053
43.
Faverjon
,
B.
, and
Soize
,
C.
,
2004
, “
Equivalent Acoustic Impedance Model. Part 2: Analytical Approximation
,”
J. Sound Vib.
,
276
(
3–5
), pp.
593
613
.10.1016/j.jsv.2003.08.054
44.
Doutres
,
O.
,
Dauchez
,
N.
,
Génevaux
,
J. M.
, and
Dazel
,
O.
,
2007
, “
Validity of the Limp Model for Porous Materials: A Criterion Based on the Biot Theory
,”
J. Acoust. Soc. Am.
,
122
(
4
), pp.
2038
2048
. 10.1121/1.2769824
45.
Groby
,
J. P.
,
Wirgin
,
A.
, and
Ogam
,
E.
,
2008
, “
Acoustic Response of a Periodic Distribution of Macroscopic Inclusions Within a Rigid Frame Porous Plate
,”
Waves Rand. Compl. Media
,
18
(
3
), pp.
409
433
.10.1080/17455030802061300
46.
Lee
,
J. H.
,
Kim
,
J.
, and
Kim
,
H. J.
,
2001
, “
Simplified Method to Solve Sound Transmission Through Structures Lined With Elastic Porous Material
,”
J. Acoust. Soc. Am.
,
110
(
5
), pp.
2282
2294
. 10.1121/1.1410967
47.
Takahashi
,
D.
,
1983
, “
Sound Radiation From Periodically Connected Double-Plate Structures
,”
J. Sound Vib.
,
90
(
4
), pp.
541
557
.10.1016/0022-460X(83)90810-6
48.
Zeng
,
G. W.
,
2002
, “
Sound Radiation From Submarine Hulls With Respect to the Studies of Models, Solutions and Acoustic Characteristics
,” Ph.D. dissertation, Huazhong University of Science and Technology, Wuhan, China (in Chinese).
49.
Yin
,
X. W.
,
2008
, “
Study on Vibration and Acousitc Radiation From (Laminated Composite) Cylindrical Shells
,” Ph.D. dissertation, Shanghai Jiaotong University, Shanghai, China (in Chinese).
50.
Reddy
,
J. N.
, and
Liu
,
C. F.
,
1985
, “
A Higher-Order Shear Deformation Theory of Laminated Elastic Shells
,”
Int. J. Eng. Sci.
,
23
(
3
), pp.
319
330
.10.1016/0020-7225(85)90051-5
51.
Xing
,
Y.
, and
Liu
,
B.
,
2009
, “
Characteristic Equations and Closed-Form Solutions for Free Vibrations of Rectangular Mindlin Plates
,”
Acta Mech. Solidi Sin.
,
22
(
2
), pp.
125
136
. 10.1016/S0894-9166(09)60097-5
52.
Magliula
,
E. A.
,
McDaniel
,
J. G.
, and
Pierce
,
A. D.
,
2012
, “
Far-Field Approximation for a Point-Excited Anisotropic Plate
,”
J. Acoust. Soc. Am.
,
131
(
6
), pp.
4535
4542
.10.1121/1.4707482
53.
Trochidis
,
A.
, and
Kalaroutis
,
A.
,
1986
, “
Sound Transmission Through Double Partitions With Cavity Absorption
,”
J. Sound Vib.
,
107
(
2
), pp.
321
327
.10.1016/0022-460X(86)90241-5
54.
Morse
,
P. M.
, and
Ingard
,
K. U.
,
1968
,
Theoretical Physics
,
McGraw-Hill
,
New York
.
55.
Ko
,
S. H.
,
1975
, “
Theoretical Analyses of Sound Attenuation in Acoustically Lined Flow Ducts Separated by Porous Splitters (Rectangular, Annular and Circular Ducts)
,”
J. Sound Vib.
,
39
(
4
), pp.
471
487
.10.1016/S0022-460X(75)80028-9
You do not currently have access to this content.