This work explores the dynamics of arrays of globally and dissipatively coupled resonators. These resonator arrays are shown to be capable of exhibiting seemingly new collective behaviors which are highly sensitive to the dispersion of the natural frequencies of the constituent resonators in the array, the intrinsic damping of the resonators in the array, and the magnitude of the global coupling coefficient that captures the strength of the dissipative coupling. These behaviors have been identified within the work as group attenuation, confined attenuation, and group resonance. Group and confined attenuation are associated with an absence of energy and are strongly dependent on the dispersion of the natural frequencies. In cases of moderate dissipative coupling, the effects of group and confined attenuation could be interpreted as frequency-dependent damping. In cases where the global coupling coefficient is large, group resonance is significant. This effect is synonymous with the resonances of the constituent resonators being shared and occurring at frequencies in between the isolated resonators' natural frequencies. Accordingly, one could view group resonance as the antithesis of localization, in that the localization of the modes of a conservatively coupled system with a finite dispersion of the constituent resonators' natural frequencies is most significant when the coupling is weak. The authors believe that collective behaviors, such as those described herein, have direct applicability in new single-input, single-output resonant mass sensors, and, with extension, a variety of other sensing and signal processing systems.

References

References
1.
Josephson
,
B. D.
,
1962
, “
Possible New Effects in Superconductive Tunnelling
,”
Phys. Lett.
,
1
(
7
), pp.
251
253
.10.1016/0031-9163(62)91369-0
2.
Walker
,
T. J.
,
1969
, “
Acoustic Synchrony: Two Mechanisms in the Snowy Tree Cricket
,”
Science
,
166
(
3907
), pp.
891
894
.10.1126/science.166.3907.891
3.
Paidoussis
,
M. P.
, and
Suss
,
S.
,
1977
, “
Stability of a Cluster of Flexible Cylinders in Bounded Axial Flow
,”
ASME J. Appl. Mech.
,
44
(
3
), pp.
401
408
.10.1115/1.3424091
4.
Buck
,
J.
,
1988
, “
Synchronous Rhythmic Flashing of Fireflies. II
,”
Q. Rev. Biol.
,
63
(
3
), pp.
265
289
.10.1086/415929
5.
Traub
,
R. D.
,
Miles
,
R.
, and
Wong
,
R. K. S.
,
1989
, “
Model of the Origin of Rhythmic Population Oscillations in the Hippocampal Slice
,”
Science
,
243
(
4896
), pp.
1319
1325
.10.1126/science.2646715
6.
Aronson
,
D. G.
,
Golubitsky
,
M.
, and
Krupa
,
M.
,
1991
, “
Coupled Arrays of Josephson Junctions and Bifurcation of Maps With SN Symmetry
,”
Nonlinearity
,
4
(
3
), pp.
861
902
.10.1088/0951-7715/4/3/013
7.
Strogatz
,
S. H.
,
2000
, “
From Kuramoto to Crawford: Exploring the Onset of Synchronization in Populations of Coupled Oscillators
,”
Physica D
,
143
(
1–4
), pp.
1
20
.10.1016/S0167-2789(00)00094-4
8.
Hodges
,
C. H.
,
1982
, “
Confinement of Vibration by Structural Irregularity
,”
J. Sound Vib.
,
82
(
3
), pp.
411
424
.10.1016/S0022-460X(82)80022-9
9.
Pierre
,
C.
, and
Dowell
,
E. H.
,
1987
, “
Localization of Vibrations by Structural Irregularity
,”
J. Sound Vib.
,
114
(
3
), pp.
549
564
.10.1016/S0022-460X(87)80023-8
10.
Pierre
,
C.
,
1988
, “
Mode Localization and Eigenvalue Loci Veering Phenomena in Disordered Structures
,”
J. Sound Vib.
,
126
(
3
), pp.
485
502
.10.1016/0022-460X(88)90226-X
11.
Bouzit
,
D.
, and
Pierre
,
C.
,
1995
, “
An Experimental Investigation of Vibration Localization in Disordered Multi-Span Beams
,”
J. Sound Vib.
,
187
(
4
), pp.
649
669
.10.1006/jsvi.1995.0550
12.
Judge
,
J. A.
,
Houston
,
B. H.
,
Photiadis
,
D. M.
, and
Herdic
,
P. C.
,
2005
, “
Effects of Disorder in One- and Two-Dimensional Micromechanical Resonator Arrays for Filtering
,”
J. Sound Vib.
,
290
(
3–5
), pp.
1119
1140
.10.1016/j.jsv.2005.05.003
13.
Weinstein
,
D.
,
Bhave
,
S. A.
,
Tada
,
M.
,
Mitarai
,
S.
,
Morita
,
S.
, and
Ikeda
,
K.
,
2007
, “
Mechanical Coupling of 2D Resonator Arrays for MEMS Filter Applications
,”
IEEE Frequency Control Symposium
(
FCS 2007
), Geneva, Switzerland, May 29–June 1, pp.
1362
1365
.10.1109/FREQ.2007.4319299
14.
Erbes
,
A.
,
Thiruvenkatanathan
,
P.
, and
Seshia
,
A. A.
,
2012
, “
Impact of Mode Localization on the Motional Resistance of Coupled MEMS Resonators
,”
IEEE Frequency Control Symposium
(
FCS 2012
), Baltimore, MD, May 21–24, pp.
1
6
.10.1109/FCS.2012.6243592
15.
Alsuwaiyan
,
A. S.
, and
Shaw
,
S. W.
,
2003
, “
Steady-State Responses in Systems of Nearly-Identical Torsional Vibration Absorbers
,”
ASME J. Vib. Acoust.
,
125
(
1
), pp.
80
87
.10.1115/1.1522420
16.
Sabater
,
A. B.
,
Hunkler
,
A. G.
, and
Rhoads
,
J. F.
,
2014
, “
A Single-Input, Single-Output Electromagnetically-Transduced Microresonator Array
,”
J. Micromech. Microeng.
,
24
(
6
), p.
065005
.10.1088/0960-1317/24/6/065005
17.
Barois
,
T.
,
Ayari
,
A.
,
Siria
,
A.
,
Perisanu
,
S.
,
Vincent
,
P.
,
Poncharal
,
P.
, and
Purcell
,
S. T.
,
2012
, “
Ohmic Electromechanical Dissipation in Nanomechanical Cantilevers
,”
Phys. Rev. B
,
85
(
7
), p.
075407
.10.1103/PhysRevB.85.075407
18.
Yu
,
L.
,
Pajouhi
,
H.
,
Nelis
,
M. R.
,
Rhoads
,
J. F.
, and
Mohammadi
,
S.
,
2012
, “
Tunable, Dual-Gate, Silicon-on-Insulator (SOI) Nanoelectromechanical Resonators
,”
IEEE Trans. Nanotechnol.
,
11
(
6
), pp.
1093
1099
.10.1109/TNANO.2012.2212028
19.
Hager
,
W.
,
1989
, “
Updating the Inverse of a Matrix
,”
SIAM Rev.
,
31
(
2
), pp.
221
239
.10.1137/1031049
20.
Seyranian
,
A. P.
, and
Mailybaev
,
A. A.
,
2003
,
Multiparameter Stability Theory With Mechanical Applications
,
World Scientific Publishing Co.
,
River Edge, NJ
.10.1142/9789812564443
21.
Gilbert
,
G. T.
,
1991
, “
Positive Definite Matrices and Sylvester's Criterion
,”
Am. Math. Mon.
,
98
(
1
), pp.
44
46
.10.2307/2324036
22.
Harville
,
D. A.
,
1997
,
Matrix Algebra From a Statistician's Perspective
,
Springer-Verlag
,
New York.
10.1007/b98818
23.
Sabater
,
A. B.
,
Kumar
,
V.
,
Mahmood
,
A.
, and
Rhoads
,
J. F.
,
2013
, “
On the Nonlinear Dynamics of Electromagnetically Transduced Microresonators
,”
J. Microelectromech. Syst.
,
22
(
5
), pp.
1020
1031
.10.1109/JMEMS.2013.2257986
24.
Sabater
,
A. B.
, and
Rhoads
,
J. F.
,
2013
, “
Dynamics of Globally-, Dissipatively-Coupled Resonators
,”
ASME
Paper No. DETC2013-12949.10.1115/DETC2013-12949
25.
Jackson
,
J. D.
,
1962
,
Classical Electrodynamics
,
Wiley
,
New York
.
You do not currently have access to this content.