This paper investigates the nonlinear dynamic characteristics of a magnetically coupled piezoelectric energy harvester under low frequency excitation where the angle of the external magnetic field is adjustable. The nonlinear dynamic equation with the identified nonlinear magnetic force is derived to describe the electromechanical interaction of variable inclination angle harvesters. The effect of excitation amplitude and frequency on dynamic behavior is proposed by using the phase trajectory, power spectrum, and bifurcation diagram. The numerical analysis shows that a rotating magnetically coupled energy harvesting system exhibits rich nonlinear characteristics with the change of external magnet inclination angle. The nonlinear route to and from large amplitude high-energy motion can be clearly observed. It is demonstrated numerically and experimentally that lumped parameters equations with an identified polynomials for magnetic force could adequately describe the characteristics of nonlinear energy harvester. The rotating magnetically coupled energy harvester possesses the usable frequency bandwidth over a wide range of low frequency excitation by adjusting the angular orientation.

References

References
1.
Pearson
,
M. R.
,
Eaton
,
M. J.
,
Pullin
,
R.
,
Featherston
,
C. A.
, and
Holford
,
K. M.
,
2012
, “
Energy Harvesting for Aerospace Structural Health Monitoring Systems
,”
J. Phys. Conf. Ser.
,
382
(
1
), p.
012025
.10.1088/1742-6596/382/1/012025
2.
Qing
,
X. P.
,
Chan
,
H. L.
, and
Beard
,
S. J.
,
2006
, “
An Active Diagnostic System for Structural Health Monitoring of Rocket Engines
,”
J. Intell. Mater. Syst. Struct.
,
17
(
7
), pp.
619
628
.10.1177/1045389X06059956
3.
Ihn
,
J. B.
, and
Chang
,
F. K.
,
2004
, “
Detection and Monitoring of Hidden Fatigue Crack Growth Using a Built-In Piezoelectric Sensor/Actuator Network: I. Diagnostics
,”
Smart Mater. Struct.
,
13
(
3
), pp.
609
620
.10.1088/0964-1726/13/3/020
4.
Lynch
,
J. P.
, and
Loh
,
K. J.
,
2006
, “
A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring
,”
Shock Vib. Dig.
,
38
(
2
), pp.
91
128
.10.1177/0583102406061499
5.
Lu
,
K. C.
,
Loh
,
C.
,
Yang
,
Y.
,
Lynch
,
J. P.
, and
Law
,
K. H.
,
2008
, “
Real-Time Structural Damage Detection Using Wireless Sensing and Monitoring System
,”
Smart Struct. Syst.
,
4
(
6
), pp.
759
778
.10.12989/sss.2008.4.6.759
6.
Zhao
,
X.
,
Gao
,
H.
,
Zhang
,
G.
,
Ayhan
,
B.
,
Yan
,
F.
,
Kwan
,
K.
, and
Rose
,
J. L.
,
2007
, “
Active Health Monitoring of an Aircraft Wing With Embedded Piezoelectric Sensor/Actuator Network: I. Defect Detection, Localization and Growth Monitoring
,”
Smart Mater. Struct.
16
(
4
), pp.
1208
1225
.10.1088/0964-1726/16/4/032
7.
Marinkovic
,
B.
, and
Koser
,
H.
,
2012
, “
Demonstration of Wide Bandwidth Energy Harvesting From Vibrations
,”
Smart Mater. Struct.
,
21
(
6
), p.
065006
.10.1088/0964-1726/21/6/065006
8.
Marinkovic
,
B.
, and
Koser
,
H.
,
2009
, “
Smart Sand—A Wide Bandwidth Vibration Energy Harvesting Platform
,”
Appl. Phys. Lett.
,
94
(
10
), p.
103505
.10.1063/1.3097207
9.
Blarigan
,
L. V.
,
Danzl
,
P.
, and
Moehlis
,
J.
,
2012
, “
A Broadband Vibrational Energy Harvester
,”
Appl. Phys. Lett.
,
100
(25), p.
253904
.10.1063/1.4729875
10.
Quinn
,
D. D.
,
Triplett
,
A. L.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2011
,“
Comparing Linear and Essentially Nonlinear Vibration-Based Energy Harvesting
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011001
.10.1115/1.4002782
11.
Hajati
,
A.
, and
Kim
,
S. G.
,
2011
, “
Ultra-Wide Bandwidth Piezoelectric Energy Harvesting
,”
Appl. Phys. Lett.
,
99
(
8
), p.
083105
.10.1063/1.3629551
12.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1867
1897
.10.1177/1045389X10390249
13.
Leland
,
E. S.
, and
Wright
,
P. K.
,
2006
, “
Resonance Tuning of Piezoelectric Vibration Energy Scavenging Generators Using Compressive Axial Preload
,”
Smart Mater. Struct.
,
15
(
5
), pp.
1413
1420
.10.1088/0964-1726/15/5/030
14.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2011
, “
Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011007
.10.1115/1.4002786
15.
Rhimi
,
M.
, and
Lajnef
,
N.
,
2012
, “
Passive Temperature Compensation in Piezoelectric Vibrators Using Shape Memory Alloy-Induced Axial Loading
,”
J. Intell. Mater. Syst. Struct.
,
23
(
15
), pp.
1759
1770
.10.1177/1045389X12451189
16.
Lallart
,
M.
,
Anton
,
S. R.
, and
Inman
,
D. J.
,
2010
, “
Frequency Self-Tuning Scheme for Broadband Vibration Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
9
), pp.
897
906
.10.1177/1045389X10369716
17.
Eichhorn
,
C.
,
Tchagsim
,
R.
,
Wilhelm
,
N.
, and
Woias
,
P.
,
2011
, “
A Smart and Self-Sufficient Frequency Tunable Vibration Energy Harvester
,”
J. Micromech. Microeng.
,
21
(
10
), p.
104003
.10.1088/0960-1317/21/10/104003
18.
Mann
,
B. P.
, and
Sims
,
N. D.
,
2009
, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
(
1–2
), pp.
515
530
.10.1016/j.jsv.2008.06.011
19.
Burrow
,
S.
,
Clare
,
L. R.
,
Carrella
,
A.
, and
Barton
,
D.
,
2008
, “
Vibration Energy Harvesters With Nonlinear Compliance
,”
Proc. SPIE
,
6928
, p. 692807.
20.
Ramlan
,
R.
,
Brennan
,
M. J.
,
Mace
,
B. R.
, and
Kovacic
,
I.
,
2009
, “
Potential Benefits of an On-Linear Stiffness in an Energy Harvesting Device
,”
Nonlinear Dyn.
,
59
(
4
), pp.
545
558
.10.1007/s11071-009-9561-5
21.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Reversible Hysteresis for Broadband Magnetopiezoelastic Energy Harvesting
,”
Appl. Phys. Lett.
,
95
(
17
), p.
174103
.10.1063/1.3253710
22.
Daqaq
,
M.
,
Stabler
,
C.
,
Qaroush
,
Y.
, and
Seuaciuc-Osorio
,
T.
,
2009
, “
Investigation of Power Harvesting Via Parametric Excitations
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
545
557
.10.1177/1045389X08100978
23.
Shahruz
,
S.
,
2004
, “
Increasing the Efficiency of Energy Scavengers by Magnets
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
4
), p.
041001
.10.1115/1.2960486
24.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
(8), p.
080601
.10.1103/PhysRevLett.102.080601
25.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
,
2009
, “
A Piezo-Magneto-Elastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
94
(
25
), p.
254102
.10.1063/1.3159815
26.
Gammaitoni
,
L.
,
Neri
,
I.
, and
Vocca
,
H.
,
2009
, “
Nonlinear Oscillators for Vibration Energy Harvesting
,”
Appl. Phys. Lett.
94
(
16
), p.
164102
.10.1063/1.3120279
27.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Physica D
,
239
(
10
), pp.
640
653
.10.1016/j.physd.2010.01.019
28.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator With Electromechanical Coupling
,”
J. Sound Vib.
,
330
(
10
), pp.
2339
2353
.10.1016/j.jsv.2010.11.018
29.
Masana
,
R.
, and
Daqaqa
,
M. F.
,
2012
, “
Energy Harvesting in the Super-Harmonic Frequency Region of a Twin-Well Oscillator
,”
J. Appl. Phys.
111
(
4
), p.
044501
.10.1063/1.3684579
30.
Pellegrini
,
S. P.
,
Tolou
,
N.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2013
, “
Bistable Vibration Energy Harvesters: A Review
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1303
1312
.10.1177/1045389X12444940
31.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.10.1088/0964-1726/22/2/023001
32.
Zhou
,
S.
,
Cao
,
J.
,
Erturk
,
A.
, and
Lin
,
J.
,
2013
, “
Enhanced Broadband Piezoelectric Energy Harvesting Using Rotatable Magnets
,”
Appl. Phys. Lett.
,
102
(
17
), p.
173901
.10.1063/1.4803445
33.
Zhou
,
S.
,
Cao
,
J.
,
Inman
,
D. J.
,
Lin
,
J.
,
Liu
,
S.
, and
Wang
,
Z.
,
2014
, “
Broadband Tristable Energy Harvester: Modeling and Experiment Verification
,”
Appl. Energy
,
133
(
C
), pp.
33
39
.10.1016/j.apenergy.2014.07.077
You do not currently have access to this content.