The shape function of the finite element-least square point interpolation method (FE-LSPIM) combines the quadrilateral element for partition of unity and the least square point interpolation method (LSPIM) for local approximation, and inherits the completeness properties of meshfree shape functions and the compatibility properties of FE shape functions, and greatly reduces the numerical dispersion error. This paper derives the formulas and performs the dispersion analysis for the FE-LSPIM. Numerical results for benchmark problems show that, the FE-LSPIM yields considerably better results than the finite element method (FEM) and element-free Galerkin method (EFGM).

References

References
1.
Babuška
,
I.
,
Ihlenburg
,
F.
,
Paik
,
E. T.
, and
Sauter
,
S. A.
,
1995
, “
A Generalized Finite Element Method for Solving the Helmholtz Equation in Two Dimensions With Minimal Pollution
,”
Comput. Methods Appl. Mech. Eng.
,
128
(
3–4
), pp.
325
359
.10.1016/0045-7825(95)00890-X
2.
Bales
,
L.
, and
Lasiecka
,
I.
,
1995
, “
Continuous Finite Elements in Space and Time for the Nonhomogeneous Wave Equation
,”
Comput. Math. Appl.
,
27
(
3
), pp.
91
102
.10.1016/0898-1221(94)90048-5
3.
Ihlenburg
,
F.
, and
Babuška
,
I.
,
1995
, “
Finite Element Solution of the Helmholtz Equation With High Wave Number. Part 1: The h-Version of the FEM
,”
Comput. Math. Appl.
,
30
(
9
), pp.
9
37
.10.1016/0898-1221(95)00144-N
4.
Richter
,
G. R.
,
1994
, “
An Explicit Finite Element Method for the Wave Equation
,”
Appl. Numer. Math.
,
16
(
1–2
), pp.
65
80
.10.1016/0168-9274(94)00048-4
5.
Jenkins
,
E. W.
,
Rivière
,
B.
, and
Wheeler
,
M. F.
, “
A Priori Error Estimates for Mixed Finite Element Approximations of the Acoustic Wave Equation
,”
SIAM J. Numer. Anal.
,
40
(
5
), pp.
1698
1715
.10.1137/S0036142901388068
6.
Chen
,
J. T.
,
Chen
,
K. H.
, and
Chyuan
,
S. W.
,
1999
, “
Numerical Experiments for Acoustic Modes of a Square Cavity Using the Dual Boundary Element Method
,”
Appl. Acoust.
,
57
(
4
), pp.
293
325
.10.1016/S0003-682X(98)00062-0
7.
Estorff
,
O. V.
,
2000
,
Boundary Elements in Acoustics: Advances and Applications
,
WIT Press
,
Southampton, UK
, Chap. 4.
8.
Wu
,
T. W.
,
2000
,
Boundary Element Acoustics: Fundamentals and Computer Codes
,
WIT Press
,
Southampton, UK
, Chap. 2.
9.
Deraemaeker
,
A.
,
Babuska
,
I.
, and
Bouillard
,
P.
,
1999
, “
Dispersion and Pollution of the FEM Solution for the Helmholtz Equation in One, Two, and Three Dimension
,”
Int. J. Numer. Methods Eng.
,
46
(
3
), pp.
471
499
.10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6
10.
Thompson
,
L.
, and
Pinsky
,
P.
,
1995
, “
A Galerkin Least-Squares Finite Element Method for the Two-Dimensional Helmholtz Equation
,”
Int. J. Numer. Methods Eng.
,
38
(
2
), pp.
371
397
.10.1002/nme.1620380303
11.
Melenk
,
J. M.
, and
Babuška
,
I.
,
1996
, “
The Partition of Unity Finite Element Method: Basic Theory and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
139
(
1–4
), pp.
289
314
.10.1016/S0045-7825(96)01087-0
12.
Harari
,
I.
, and
Frederic
,
M.
,
2004
, “
Numerical Investigations of Stabilized Finite Element Computations for Acoustics
,”
Wave Motion
,
39
(
6
), pp.
339
349
.10.1016/j.wavemoti.2003.12.001
13.
Petersen
,
S.
,
Dreyer
,
D.
, and
Estorff
,
O. V.
,
2006
, “
Assessment of Finite and Spectral Element Shape Functions or Efficient Iterative Simulations of Interior Acoustics
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
7
), pp.
6463
6478
.10.1016/j.cma.2006.01.008
14.
Harari
,
I.
,
2006
, “
A Survey of Finite Element Methods for Time-Harmonic Acoustics
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
2
), pp.
1594
1607
.10.1016/j.cma.2005.05.030
15.
Thompson
,
L. L.
,
2006
, “
A Review of Finite-Element Methods for Time-Harmonic Acoustics
,”
J. Acoust. Soc. Am.
,
119
(
3
), pp.
1315
1330
.10.1121/1.2164987
16.
Bouillard
,
P.
, and
Suleau
,
S.
,
1998
, “
Element-Free Galerkin Solutions for Helmholtz Problems: Formulation and Numerical Assessment of the Pollution Effect
,”
Comput. Methods Appl. Mech. Eng.
,
162
(
5
), pp.
317
335
.10.1016/S0045-7825(97)00350-2
17.
Bouillard
,
P.
,
Lacroix
,
V.
, and
De Bel
,
E.
,
2004
, “
A Wave-Oriented Meshless Formulation for Acoustical and Vibro-Acoustical Applications
,”
Wave Motion
,
39
(
5
), pp.
295
305
.10.1016/j.wavemoti.2003.12.003
18.
Kireeva
,
O.
,
Mertens
,
T.
, and
Bouillard
,
P.
,
2006
, “
A Coupled EFGM–CIE Method for Acoustic Radiation
,”
Comput. Struct.
,
84
(
2
), pp.
2092
2099
.10.1016/j.compstruc.2006.04.011
19.
Wenterodt
,
C.
, and
Estorff
,
O. V.
,
2009
, “
Dispersion Analysis of the Meshfree Radial Point Interpolation Method for the Helmholtz Equation
,”
Int. J. Numer. Methods Eng.
,
77
(
2
), pp.
1670
1689
.10.1002/nme.2463
20.
Rajendran
,
S.
, and
Zhang
,
B. R.
,
2007
, “
A FE-Meshfree QUAD4 Element Based on Partition of Unity
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
6
), pp.
128
147
.10.1016/j.cma.2007.07.010
21.
Rajendran
,
S.
, and
Zhang
,
B. R.
,
2008
, “
FE-Meshfree QUAD4 Element for Free-Vibration Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
2
), pp.
3595
3604
.10.1016/j.cma.2007.11.012
22.
Yao
,
L. Y.
,
Yu
,
D. J.
,
Cui
,
X. Y.
, and
Zhou
,
J. W.
,
2012
, “
A Hybrid Finite Element-Least Square Point Interpolation Method for Solving Acoustic Problems
,”
Noise Control Eng. J.
,
60
(
1
), pp.
97
112
.10.3397/1.3676187
23.
Suleau
,
S.
,
Deraemaeker
,
A.
, and
Bouillard
,
P.
,
2000
, “
Dispersion and Pollution of Meshless Solution for the Helmholtz Equation
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
1
), pp.
639
657
.10.1016/S0045-7825(99)00430-2
You do not currently have access to this content.