The authors present numerical results for a systematic parametric study of the effect of honeycomb core geometry on the sound transmission and vibration properties of in-plane loaded honeycomb core sandwich panels using structural acoustic finite element analysis (FEA). Honeycomb cellular structures offer many distinct advantages over homogenous materials because their effective material properties depend on both their constituent material properties and their geometric cell configuration. From these structures, a wide range of targeted effective material properties can be achieved thus supporting forward design-by-tailoring honeycomb cellular structures for specific applications. One area that has not been fully explored is the set of acoustic properties of honeycomb and understanding of how designers can effectively tune designs in different frequency ranges. One such example is the insulation of target sound frequencies to prevent sound transmission through a panel. This work explored the effect of geometry of in-plane honeycomb cores in sandwich panels on the acoustic properties the panel. The two acoustic responses of interest are the general level of sound transmission loss (STL) of the panel and the location of the resonance frequencies that exhibit high levels of sound transmission, or low sound pressure transmission loss. Constant mass honeycomb core models were studied with internal cell angles ranging in increments from −45 deg to +45 deg. Effective honeycomb moduli based on static analysis of honeycomb unit cells are calculated and correlated to the shift in resonance frequencies for the different geometries, with all panels having the same total mass. This helps explain the direction of resonance frequency shift found in the panel natural frequency solutions. Results show an interesting trend of the first resonance frequencies in relation to effective structural properties. Honeycomb geometries with smaller core internal cell angles, under constant mass constraints, shifted natural frequencies lower, and had more resonances in the 1–1000 Hz range, but exhibited a higher sound pressure transmission loss between resonant frequencies.

References

References
1.
Ju
,
J.
,
Summers
,
J. D.
,
Ziegert
,
J.
, and
Fadel
,
G.
,
2012
, “
Design of Honeycombs for Modulus and Yield Strain in Shear
,”
ASME J. Eng. Mater. Technol.
,
134
(
1
), p.
011002
.10.1115/1.4004488
2.
Berglind
,
L. A.
,
Ju
,
J.
, and
Summers
,
J. D.
,
2010
, “
Method to Design Honeycombs for a Shear Flexible Structure
,”
SAE Int. J. Passeng. Cars—Mech. Syst.
,
3
(
1
), pp.
588
597
.10.4271/2010-01-0762
3.
Schultz
,
J.
,
Griese
,
D.
,
Ju
,
J.
,
Shankar
,
P.
,
Summers
,
J. D.
, and
Thompson
,
L.
,
2012
, “
Design of Honeycomb Meso-Structures for Crushing Energy Absorption
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071004
.10.1115/1.4006739
4.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University
, New York.
5.
Kolla
,
A.
,
Ju
,
J.
,
Summers
,
J. D.
,
Fadel
,
G. M.
, and
Ziegert
,
J.
,
2010
, “
Design of Chiral Honeycomb Meso-Structures for High Shear Flexure
,”
ASME
Paper No. DETC2010-28557. 10.1115/DETC2010-28557
6.
Zou
,
Z.
,
Reid
,
S. R.
,
Tan
,
P. J.
,
Li
,
S.
, and
Harrigan
,
J. J.
,
2009
, “
Dynamic Crushing of Honeycombs and Features of Shock Fronts
,”
Int. J. Impact Eng.
,
36
(
1
), pp.
165
176
.10.1016/j.ijimpeng.2007.11.008
7.
Ruzzene
,
M.
,
2004
, “
Vibration and Sound Radiation of Sandwich Beams With Honeycomb Truss Core
,”
ASME J. Sound Vib.
,
277
(
4
), pp.
741
763
.10.1016/j.jsv.2003.09.026
8.
Degischer
,
H. P.
, and
Kriszt
,
B.
,
2002
,
Handbook of Cellular Metals: Production, Processing, Applications
,
Wiley-VCH Verlag GmbH & Co
, Weinheim, Germany.
9.
Ju
,
J.
,
Summers
,
J. D.
,
Ziegert
,
J.
, and
Fadel
,
G. M.
,
2009
, “
Cyclic Energy Loss of Honeycombs Under In-Plane Shear Loading
,”
ASME
Paper No. IMECE2009-12658.10.1115/IMECE2009-12658
10.
Seepersad
,
C. C.
,
Dempsey
,
B. M.
,
Allen
,
J. K.
,
Mistree
,
F.
, and
McDowell
,
D. L.
,
2004
, “
Design of Multifunctional Honeycomb Materials
,”
AIAA J.
,
42
(
5
), pp.
1025
1033
.10.2514/1.9594
11.
Dempsey
,
B. M.
,
Eisele
,
S.
, and
McDowell
,
D. L.
,
2005
, “
Heat Sink Applications of Extruded Metal Honeycombs
,”
Int. J. Heat Mass Transfer
,
48
(
3
), pp.
527
535
.10.1016/j.ijheatmasstransfer.2004.09.013
12.
Franco
,
F.
,
Cunefare
,
K. A.
, and
Ruzzene
,
M.
,
2007
, “
Structural-Acoustic Optimization of Sandwich Panels
,”
ASME J. Vib. Acoust.
,
129
(
3
), pp.
330
340
.10.1115/1.2731410
13.
Kurtze
,
G.
, and
Watters
,
B. G.
,
1959
, “
New Wall Design for High Transmission Loss or High Damping
,”
J. Acoust. Soc. Am.
,
31
(
6
), pp.
739
748
.10.1121/1.1907780
14.
Ford
,
R. D.
,
Lord
,
P.
, and
Walker
,
A. W.
,
1967
, “
Sound Transmission Through Sandwich Constructions
,”
J. Sound Vib.
,
5
(
1
), pp.
9
21
.10.1016/0022-460X(67)90173-3
15.
Smolenski
,
C. P.
, and
Krokosky
,
E. M.
,
1973
, “
Dilational Mode Sound Transmission in Sandwich Panels
,”
J. Acoust. Soc. Am.
,
54
(
6
), pp.
1449
1457
.10.1121/1.1914444
16.
Dym
,
C. L.
, and
Lang
,
M. A.
,
1974
, “
Transmission of Sound Through Sandwich Panels
,”
J. Acoust. Soc. Am.
,
56
(
5
), pp.
1523
1532
.10.1121/1.1903474
17.
Wang
,
T.
,
Li
,
S.
,
Rajaram
,
S.
, and
Nutt
,
S. R.
,
2010
, “
Predicting the Sound Transmission Loss of Sandwich Panels by Statistical Energy Analysis Approach
,”
ASME J. Vib. Acoust.
,
132
(
1
), p.
11004
.10.1115/1.4000459
18.
Wang
,
T.
,
Sokolinsky
,
V. S.
,
Rajaram
,
S.
, and
Nutt
,
S. R.
,
2005
, “
Assessment of Sandwich Models for the Prediction of Sound Transmission Loss in Unidirectional Sandwich Panels
,”
Appl. Acoust.
,
66
(
3
), pp.
245
262
.10.1016/j.apacoust.2004.08.005
19.
Moore
,
J. A.
, and
Lyon
,
R. H.
,
1991
, “
Sound Transmission Loss Characteristics of Sandwich Panel Constructions
,”
J. Acoust. Soc. Am.
,
89
(
2
), pp.
777
791
.10.1121/1.1894638
20.
Denli
,
H.
, and
Sun
,
J. Q.
,
2007
, “
Structural-Acoustic Optimization of Sandwich Structures With Cellular Cores for Minimum Sound Radiation
,”
J. Sound Vib.
,
301
(
1
), pp.
93
105
.10.1016/j.jsv.2006.09.025
21.
Scarpa
,
F.
, and
Tomlinson
,
G.
,
2000
, “
Theoretical Characteristics of the Vibration of Sandwich Plates With In-Plane Negative Poisson's Ratio Values
,”
J. Sound Vib.
,
230
(
1
), pp.
45
67
.10.1006/jsvi.1999.2600
22.
El-Raheb
,
M.
, and
Wagner
,
P.
,
1997
, “
Transmission of Sound Across a Trusslike Periodic Panel; 2D Analysis
,”
J. Acoust. Soc. Am.
,
102
(
4
), pp.
2176
2183
.10.1121/1.419633
23.
Lok
,
T. S.
, and
Cheng
,
Q. H.
,
2000
, “
Free Vibration of Clamped Orthotropic Sandwich Panel
,”
J. Sound Vib.
,
229
(
2
), pp.
311
327
.10.1006/jsvi.1999.2485
24.
Kim
,
Y.-J.
, and
Han
,
J.-H.
,
2013
, “
Identification of Acoustic Characteristics of Honeycomb Sandwich Composite Panels Using Hybrid Analytical/Finite Element Method
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
11006
.10.1115/1.4007241
25.
Qian
,
Z.
,
Chang
,
D.
,
Liu
,
B.
, and
Liu
,
K.
,
2013
, “
Prediction of Sound Transmission Loss for Finite Sandwich Panels Based on a Test Procedure on Beam Elements
,”
ASME J. Vib. Acoust.
,
135
(
6
), p.
61005
.10.1115/1.4023842
26.
Rossing
,
T. D.
,
2007
,
Springer Handbook of Acoustics
,
Springer
, New York.10.1007/978-0-387-30425-0
27.
Möser
,
M.
,
2004
,
Engineering Acoustics: An Introduction to Noise Control
,
Springer
,
Berlin, Germany
.
28.
Ng
,
C. F.
, and
Hui
,
C. K.
,
2008
, “
Low Frequency Sound Insulation Using Stiffness Control With Honeycomb Panels
,”
Appl. Acoust.
,
69
(
4
), pp.
293
301
.10.1016/j.apacoust.2006.12.001
29.
Raichel
,
D. R.
,
2006
,
The Science and Applications of Acoustics
,
Springer
, New York.10.1121/1.1582438
30.
Ju
,
J.
, and
Summers
,
J. D.
,
2011
, “
Compliant Hexagonal Periodic Lattice Structures Having Both High Shear Strength and High Shear Strain
,”
Mater. Des.
,
32
(
2
), pp.
512
524
.10.1016/j.matdes.2010.08.029
31.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Schajer
,
G. S.
, and
Robertson
,
C. I.
,
1982
, “
The Mechanics of Two-Dimensional Cellular Materials
,”
Proc. R. Soc. London, Ser. A
,
382
(
1782
), pp.
25
42
.10.1098/rspa.1982.0087
32.
Masters
,
I. G.
, and
Evans
,
K. E.
,
1996
, “
Models for the Elastic Deformation of Honeycombs
,”
Compos. Struct.
,
35
(
4
), pp.
403
422
.10.1016/S0263-8223(96)00054-2
33.
Shan
,
N.
,
2011
, “
Analytical Solutions Using High Order Composite Laminate Theory for Honeycomb Sandwich Plates With Viscoelastic Frequency Dependent Damping
,” Master's thesis, Clemson University, Clemson, SC.
34.
Kumar
,
R. S.
, and
McDowell
,
D. L.
,
2004
, “
Generalized Continuum Modeling of 2D Periodic Cellular Solids
,”
Int. J. Solids Struct.
,
41
(
26
), pp.
7399
7422
.10.1016/j.ijsolstr.2004.06.038
35.
Gonella
,
S.
, and
Ruzzene
,
M.
,
2008
, “
Homogenization and Equivalent In-Plane Properties of Two-Dimensional Periodic Lattices
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
2897
2915
.10.1016/j.ijsolstr.2008.01.002
36.
Lee
,
U.
,
1998
, “
Equivalent Continuum Representation of Lattice Beams: Spectral Element Approach
,”
Eng. Struct.
,
20
(
7
), pp.
587
592
.10.1016/S0141-0296(97)00063-1
37.
Seera
,
N.
,
2011
, “
Viscoelastic Damping of Hexagonal Honeycomb Sandwich Panels
,” Master's thesis, Clemson University, Clemson, SC.
38.
Griese
,
D.
,
2012
, “
Finite Element Modeling and Design of Honeycomb Sandwich Panels for Acoustic Performance
,” Clemson University, Clemson, SC.
You do not currently have access to this content.