The trapezoidal rule, which is a special case of the Newmark family of algorithms, is one of the most widely used methods for transient hyperbolic problems. In this work, we show that this rule conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an “energy-like measure” in the case of undamped acoustic problems. These conservation properties, thus, provide a rational basis for using this algorithm. In linear elastodynamics problems, variants of the trapezoidal rule that incorporate “high-frequency” dissipation are often used, since the higher frequencies, which are not approximated properly by the standard displacement-based approach, often result in unphysical behavior. Instead of modifying the trapezoidal algorithm, we propose using a hybrid finite element framework for constructing the stiffness matrix. Hybrid finite elements, which are based on a two-field variational formulation involving displacement and stresses, are known to approximate the eigenvalues much more accurately than the standard displacement-based approach, thereby either bypassing or reducing the need for high-frequency dissipation. We show this by means of several examples, where we compare the numerical solutions obtained using the displacement-based and hybrid approaches against analytical solutions.

References

References
1.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
ASCE J. Eng. Mech. Div.
,
85
(
3
), pp.
67
94
.
2.
Simo
,
J. C.
, and
Tarnow
,
N.
,
1992
, “
The Discrete Energy–Momentum Method. Conserving Algorithms for Nonlinear Elastodynamics
,”
Z. Angew. Math. Phys.
,
43
(
5
), pp.
757
792
.10.1007/BF00913408
3.
Laursen
,
T. A.
, and
Chawla
,
V.
,
1997
, “
Design of Energy Conserving Algorithms for Frictionless Dynamic Contact Problems
,”
Int. J. Numer. Methods Eng.
,
40
(
5
), pp.
863
886
.10.1002/(SICI)1097-0207(19970315)40:5<863::AID-NME92>3.0.CO;2-V
4.
West
,
M.
,
Kane
,
C.
,
Marsden
,
J. E.
, and
Ortiz
,
M.
,
2000
, “
Variational Integrators, the Newmark Scheme, and Dissipative Systems
,”
International Conference on Differential Equations
, Berlin, Germany, Aug. 1–7, 1999,
B.
Fiedler
,
K.
,
Groger
,
J.
, and
Sprekels
, eds.,
World Scientific
, Singapore, pp.
1009
1011
.
5.
Krenk
,
S.
,
2006
, “
Energy Conservation in Newmark Based Time Integration Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
44–47
), pp.
6110
6124
.10.1016/j.cma.2005.12.001
6.
Pian
,
T. H. H.
, and
Sumihara
,
K.
,
1984
, “
Rational Approach for Assumed Stress Finite Elements
,”
Int. J. Numer. Methods Eng.
,
20
(
9
), pp.
1685
1695
.10.1002/nme.1620200911
7.
Pian
,
T. H. H.
, and
Tong
,
P.
,
1986
, “
Relations Between Incompatible Displacement Model and Hybrid Stress Model
,”
Int. J. Numer. Methods Eng.
,
22
(
1
), pp.
173
181
.10.1002/nme.1620220112
8.
Jog
,
C. S.
,
2005
, “
A 27-Node Hybrid Brick and a 21-Node Hybrid Wedge Element for Structural Analysis
,”
Finite Elem. Anal. Des.
,
41
(
11–12
), pp.
1209
1232
.10.1016/j.finel.2004.11.007
9.
Jog
,
C. S.
,
2010
, “
Improved Hybrid Elements for Structural Analysis
,”
J. Mech. Mater. Struct.
,
5
(
3
), pp.
507
528
.10.2140/jomms.2010.5.507
10.
Hughes
,
T. J. R.
,
2009
,
The Finite Element Method
,
Dover Publications
,
New York
.
11.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.10.1002/eqe.4290050306
12.
Krenk
,
S.
,
2006
, “
State-Space Time Integration With Energy Control and Fourth-Order Accuracy for Linear Dynamic Systems
,”
Int. J. Numer. Methods Eng.
,
65
(
5
), pp.
595
619
.10.1002/nme.1449
13.
Krenk
,
S.
,
2008
, “
Extended State-Space Time Integration With High-Frequency Energy Dissipation
,”
Int. J. Numer. Methods Eng.
,
73
(
12
), pp.
1767
1787
.10.1002/nme.2144
14.
Shishvan
,
S. S.
,
Noorzad
,
A.
, and
Ansari
,
A.
,
2009
, “
A Time Integration Algorithm for Linear Transient Analysis Based on the Reproducing Kernel Method
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
41–44
), pp.
3361
3377
.10.1016/j.cma.2009.06.011
15.
Manoj
,
K. G.
, and
Bhattacharyya
,
S. K.
,
1999
, “
Transient Acoustic Radiation From Impulsively Accelerated Bodies by the Finite Element Method
,”
J. Acous. Soc. Am.
,
107
(
3
), pp.
1179
1188
.10.1121/1.428407
16.
Pinsky
,
P. M.
, and
Abboud
,
N. N.
,
1991
, “
Finite Element Solution of the Transient Exterior Structural Acoustics Problem Based on the Use of Radially Asymptotic Boundary Operators
,”
Comput. Methods Appl. Mech. Eng.
,
85
(
3
), pp.
311
348
.10.1016/0045-7825(91)90101-B
17.
Yue
,
B.
, and
Gudati
,
M. N.
,
2005
, “
Dispersion-Reducing Finite Elements for Transient Acoustics
,”
J. Acoust. Soc. Am.
,
118
(
4
), pp.
2132
2141
.10.1121/1.2011149
18.
Ainsworth
,
M.
, and
Wajid
,
H. A.
,
2010
, “
Optimally Blended Spectral-Finite Element Scheme for Wave Propagation and Nonstandard Reduced Integration
,”
SIAM J. Numer. Anal.
,
48
(
1
), pp.
346
371
.10.1137/090754017
19.
Everstine
,
G. C.
,
1997
, “
Finite Element Formulations of Structural Acoustics Problems
,”
Comput. Struct.
,
60
(
3
), pp.
307
321
.10.1016/S0045-7949(96)00252-0
20.
Jog
,
C. S.
,
2013
, “
An Outward-Wave-Favouring Finite Element Based Strategy for Exterior Acoustical Problems
,”
Int. J. Acoust. Vib.
,
18
(
1
), pp.
27
38
.
21.
Wu
,
S. F.
,
1993
, “
Transient Sound Radiation From Impulsively Accelerated Bodies
,”
J. Acoust. Soc. Am.
,
94
(
1
), pp.
542
553
.10.1121/1.407066
22.
Soedel
,
W.
,
2005
,
Vibrations of Shells and Plates
,
Marcel Dekker
,
New York
.
23.
Akkas
,
N.
,
Akay
,
H. U.
, and
Yilmaz
,
C.
,
1978
, “
Applicability of General-Purpose Finite Element Programs in Solid–Fluid Interaction Problems
,”
Comput. Struct.
,
10
(
5
), pp.
773
783
.10.1016/0045-7949(79)90041-5
You do not currently have access to this content.