Scale effect on the tension-induced intermodal coupling between the flexural modes in nanomechanical resonators is investigated. Based on the nonlocal theory of elasticity, a theoretical model is developed to depict the scale effect on the intermodal coupling in nanomechanical resonators. The experimental and theoretical validations suggest that the results of the present work are in agreement with the experimental data. The tuning effects of mode coupling on the pull-in voltage and resonant frequency of the doubly clamped beam with the scale effect are analyzed in detail. The results show that the coupling between in-plane and out-of-plane modes increases as the scale reduces since the scale effect could make the energy between mechanical modes transfer more easily. The mode coupling with scale effect can increase the tuning range of the pull-in voltages and positions. The contributions of each term included by the scale effect to the coupling strength, pull-in voltages and frequencies of nanoresonators are discussed. Furthermore, approximate critical formulae are obtained to predict the scale effect on the resonant frequency of nanoresonators. The work demonstrates that the scale effect should be taken into account for the further understanding of the coupling mechanism of nanoresonators.

References

References
1.
Zalalutdinov
,
M.
,
Ilic
,
B.
,
Czaplewski
,
D.
,
Zehnder
,
A.
,
Craighead
,
H.
, and
Parpia
,
J.
,
2000
, “
Frequency-Tunable Micromechanical Oscillator
,”
Appl. Phys. Lett.
,
77
(
20
), pp.
3287
3289
.10.1063/1.1326035
2.
Eriksson
,
A.
,
Midtvedt
,
D.
,
Croy
,
A.
, and
Isacsson
,
A.
,
2013
, “
Frequency Tuning, Nonlinearities and Mode Coupling in Circular Mechanical Graphene Resonators
,”
Nanotechnology
,
24
(
39
), p.
395702
.10.1088/0957-4484/24/39/395702
3.
Ansari
,
R.
, and
Motevalli
,
B.
,
2011
, “
On New Aspects of Nested Carbon Nanotubes as Gigahertz Oscillators
,”
ASME J. Vib. Acoust.
,
133
(
5
), p.
051003
.10.1115/1.4003933
4.
Vallabhaneni
,
A. K.
,
Rhoads
,
J. F.
,
Murthy
,
J. Y.
, and
Ruan
,
X.
,
2013
, “
Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
024504
.10.1115/1.4023057
5.
Martin
,
M. J.
, and
Houston
,
B. H.
,
2011
, “
Frequency Response of Cylindrical Resonators in a Viscous Fluid
,”
ASME J. Vib. Acoust.
,
133
(
3
), p.
031009
.10.1115/1.4003203
6.
Kozinsky
,
I.
,
Postma
,
H. C.
,
Bargatin
,
I.
, and
Roukes
,
M.
,
2006
, “
Tuning Nonlinearity, Dynamic Range, and Frequency of Nanomechanical Resonators
,”
Appl. Phys. Lett.
,
88
(
25
), p.
253101
.10.1063/1.2209211
7.
Syms
,
R. R.
,
1998
, “
Electrothermal Frequency Tuning of Folded and Coupled Vibrating Micromechanical Resonators
,”
J. Microelectromech. Syst.
,
7
(
2
), pp.
164
171
.10.1109/84.679341
8.
Pandey
,
A. K.
,
2013
, “
Effect of Coupled Modes on Pull-In Voltage and Frequency Tuning of a NEMS Device
,”
J. Micromech. Microeng.
,
23
(
8
), p.
085015
.10.1088/0960-1317/23/8/085015
9.
Truitt
,
P. A.
,
Hertzberg
,
J. B.
,
Altunkaya
,
E.
, and
Schwab
,
K. C.
,
2013
, “
Linear and Nonlinear Coupling Between Transverse Modes of a Nanomechanical Resonator
,”
J. Appl. Phys.
,
114
(
11
), p.
114307
.10.1063/1.4821273
10.
Venstra
,
W. J.
,
van Leeuwen
,
R.
, and
van der Zant
,
H. S. J.
,
2012
, “
Strongly Coupled Modes in a Weakly Driven Micromechanical Resonator
,”
Appl. Phys. Lett.
,
101
(
24
), p.
243111
.10.1063/1.4769182
11.
Westra
,
H.
,
Poot
,
M.
,
van der Zant
,
H.
, and
Venstra
,
W.
,
2010
, “
Nonlinear Modal Interactions in Clamped-Clamped Mechanical Resonators
,”
Phys. Rev. Lett.
,
105
(
11
), p.
117205
.10.1103/PhysRevLett.105.117205
12.
Eichler
,
A.
,
del Álamo Ruiz
,
M.
,
Plaza
,
J.
, and
Bachtold
,
A.
,
2012
, “
Strong Coupling Between Mechanical Modes in a Nanotube Resonator
,”
Phys. Rev. Lett.
,
109
(
2
), p.
025503
.10.1103/PhysRevLett.109.025503
13.
Khan
,
R.
,
Massel
,
F.
, and
Heikkilä
,
T.
,
2013
, “
Tension-Induced Nonlinearities of Flexural Modes in Nanomechanical Resonators
,”
Phys. Rev. B
,
87
(
23
), p.
235406
.10.1103/PhysRevB.87.235406
14.
Lulla
,
K.
,
Cousins
,
R.
,
Venkatesan
,
A.
,
Patton
,
M.
,
Armour
,
A.
,
Mellor
,
C.
, and
Owers-Bradley
,
J.
,
2012
, “
Nonlinear Modal Coupling in a High-Stress Doubly-Clamped Nanomechanical Resonator
,”
New J. Phys.
,
14
(
11
), p.
113040
.10.1088/1367-2630/14/11/113040
15.
Matheny
,
M.
,
Villanueva
,
L.
,
Karabalin
,
R.
,
Sader
,
J. E.
, and
Roukes
,
M.
,
2013
, “
Nonlinear Mode-Coupling in Nanomechanical Systems
,”
Nano Lett.
,
13
(
4
), pp.
1622
1626
.10.1021/nl400070e
16.
Westra
,
H.
,
van der Zant
,
H.
, and
Venstra
,
W.
,
2012
, “
Modal Interactions of Flexural and Torsional Vibrations in a Microcantilever
,”
Ultramicroscopy
,
120
, pp.
41
47
.10.1016/j.ultramic.2012.06.010
17.
Steele
,
G. A.
,
Hüttel
,
A. K.
,
Witkamp
,
B.
,
Poot
,
M.
,
Meerwaldt
,
H. B.
,
Kouwenhoven
,
L. P.
, and
van der Zant
,
H. S.
,
2009
, “
Strong Coupling Between Single-Electron Tunneling and Nanomechanical Motion
,”
Science
,
325
(
5944
), pp.
1103
1107
.10.1126/science.1176076
18.
Westra
,
H.
,
Karabacak
,
D.
,
Brongersma
,
S.
,
Crego-Calama
,
M.
,
van der Zant
,
H.
, and
Venstra
,
W.
,
2011
, “
Interactions Between Directly- and Parametrically-Driven Vibration Modes in a Micromechanical Resonator
,”
Phys. Rev. B
,
84
(
13
), p.
134305
.10.1103/PhysRevB.84.134305
19.
Yamaguchi
,
H.
, and
Mahboob
,
I.
,
2013
, “
Parametric Mode Mixing in Asymmetric Doubly Clamped Beam Resonators
,”
New J. Phys.
,
15
(
1
), p.
015023
.10.1088/1367-2630/15/1/015023
20.
Faust
,
T.
,
Rieger
,
J.
,
Seitner
,
M. J.
,
Krenn
,
P.
,
Kotthaus
,
J. P.
, and
Weig
,
E. M.
,
2012
, “
Nonadiabatic Dynamics of Two Strongly Coupled Nanomechanical Resonator Modes
,”
Phys. Rev. Lett.
,
109
(
3
), p.
037205
.10.1103/PhysRevLett.109.037205
21.
Matheny
,
M. H.
,
Grau
,
M.
,
Villanueva
,
L. G.
,
Karabalin
,
R. B.
,
Cross
,
M.
, and
Roukes
,
M. L.
,
2014
, “
Phase Synchronization of Two Anharmonic Nanomechanical Oscillators
,”
Phys. Rev. Lett.
,
112
(
1
), p.
014101
.10.1103/PhysRevLett.112.014101
22.
Eringen
,
A. C.
, and
Edelen
,
D.
,
1972
, “
On Nonlocal Elasticity
,”
Int. J. Eng. Sci.
,
10
(
3
), pp.
233
248
.10.1016/0020-7225(72)90039-0
23.
Lu
,
P.
,
Lee
,
H. P.
,
Lu
,
C.
, and
Zhang
,
P. Q.
,
2006
, “
Dynamic Properties of Flexural Beams Using A Nonlocal Elasticity Model
,”
J. Appl. Phys.
,
99
(
7
), p.
073510
.10.1063/1.2189213
24.
Hu
,
K.-M.
,
Zhang
,
W.-M.
,
Zhong
,
Z.-Y.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2014
, “
Effect of Surface Layer Thickness on Buckling and Vibration of Nonlocal Nanowires
,”
Phys. Lett. A
,
378
(
7–8
), pp.
650
654
.10.1016/j.physleta.2014.01.005
25.
Wang
,
Y.-Z.
,
Li
,
F.-M.
, and
Kishimoto
,
K.
,
2012
, “
Effects of Axial Load and Elastic Matrix on Flexural Wave Propagation in Nanotube With Nonlocal Timoshenko Beam Model
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031011
.10.1115/1.4005832
26.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
.10.1063/1.332803
27.
Sudak
,
L.
,
2003
, “
Column Buckling of Multiwalled Carbon Nanotubes Using Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
,
94
(
11
), pp.
7281
7287
.10.1063/1.1625437
28.
Zhang
,
Y.
,
Liu
,
G.
, and
Xie
,
X.
,
2005
, “
Free Transverse Vibrations of Double-Walled Carbon Nanotubes Using a Theory of Nonlocal Elasticity
,”
Phys. Rev. B
,
71
(
19
), p.
195404
.10.1103/PhysRevB.71.195404
29.
Wang
,
Q.
,
2005
, “
Wave Propagation in Carbon Nanotubes Via Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
,
98
(
12
), p.
124301
.10.1063/1.2141648
30.
Wang
,
Q.
,
Zhou
,
G.
, and
Lin
,
K.
,
2006
, “
Scale Effect on Wave Propagation Of Double-Walled Carbon Nanotubes
,”
Int. J. Solids Struct.
,
43
(
20
), pp.
6071
6084
.10.1016/j.ijsolstr.2005.11.005
31.
Yang
,
Y.
, and
Lim
,
C.
,
2012
, “
Non-Classical Stiffness Strengthening Size Effects for Free Vibration of a Nonlocal Nanostructure
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
57
68
.10.1016/j.ijmecsci.2011.09.007
32.
Rabinovich
,
A.
,
Ya'akobovitz
,
A.
, and
Krylov
,
S.
,
2014
, “
Fringing Electrostatic Field Actuation of Microplates for Open Air Environment Sensing
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
041013
.10.1115/1.4027559
33.
Wang
,
B.
,
Zhou
,
S.
,
Zhao
,
J.
, and
Chen
,
X.
,
2011
, “
Size-Dependent Pull-In Instability of Electrostatically Actuated Microbeam-Based MEMS
,”
J. Micromech. Microeng.
,
21
(
2
), p.
027001
.10.1088/0960-1317/21/2/027001
34.
Zhang
,
W.-M.
,
Yan
,
H.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2014
, “
Electrostatic Pull-In Instability in MEMS/NEMS: A Review
,”
Sens. Actuators, A
,
214
, pp.
187
218
.10.1016/j.sna.2014.04.025
35.
Chao
,
P. C.
,
Chiu
,
C.
, and
Liu
,
T.-H.
,
2008
, “
DC Dynamic Pull-In Predictions for a Generalized Clamped–Clamped Micro-Beam Based on a Continuous Model and Bifurcation Analysis
,”
J. Micromech. Microeng.
,
18
(
11
), p.
115008
.10.1088/0960-1317/18/11/115008
36.
Fang
,
Y.
, and
Li
,
P.
,
2013
, “
A New Approach and Model for Accurate Determination of the Dynamic Pull-In Parameters of Microbeams Actuated by a Step Voltage
,”
J. Micromech. Microeng.
,
23
(
4
), p.
045010
.10.1088/0960-1317/23/4/045010
37.
Elata
,
D.
, and
Bamberger
,
H.
,
2006
, “
On the Dynamic Pull-In of Electrostatic Actuators With Multiple Degrees of Freedom and Multiple Voltage Sources
,”
J. Microelectromech. Syst.
,
15
(
1
), pp.
131
140
.10.1109/JMEMS.2005.864148
38.
Dequesnes
,
M.
,
Rotkin
,
S.
, and
Aluru
,
N.
,
2002
, “
Calculation of Pull-In Voltages for Carbon-Nanotube-Based Nanoelectromechanical Switches
,”
Nanotechnology
,
13
(
1
), pp.
120
131
.10.1088/0957-4484/13/1/325
39.
He
,
J.
, and
Lilley
,
C. M.
,
2008
, “
Surface Effect on the Elastic Behavior of Static Bending Nanowires
,”
Nano Lett.
,
8
(
7
), pp.
1798
1802
.10.1021/nl0733233
40.
Thai
,
H.-T.
,
2012
, “
A Nonlocal Beam Theory for Bending, Buckling, and Vibration of Nanobeams
,”
Int. J. Eng. Sci.
,
52
, pp.
56
64
.10.1016/j.ijengsci.2011.11.011
41.
Aydogdu
,
M.
,
2009
, “
A General Nonlocal Beam Theory: Its Application to Nanobeam Bending, Buckling and Vibration
,”
Physica E
,
41
(
9
), pp.
1651
1655
.10.1016/j.physe.2009.05.014
You do not currently have access to this content.