Reduced-order models for characterizing friction interfaces have been investigated for the last 75 years. Recent work has been focused on microslip formulations of the interface behavior, where a continuous interface is approximated with a multipoint contact model. A novel multipoint friction model is presented in this work, which is entirely derived from a shear-lag approach to resolve the kinematic state of the friction interface under the presence of tangential loading. Both static and dynamic loading conditions are analyzed and comparisons are drawn between the continuous and discrete models. The series Iwan model presented in this work differentiates between the elastic and friction components of the interface displacement, both parameters being calibrated using material properties and model geometry. The response characteristics of the series Iwan model under dynamic loading conditions are also investigated. The series Iwan model is in good agreement with the shear-lag approach for results such as propagation of the slip zone with increasing pullout force. The transient response of the structural mass and the kinematic states of the Iwan elements are convergent with increasing model order. A direct physical correlation between the response of the series Iwan model and kinematics of the continuous interface is developed, which greatly enhances the appeal of this particular model for simulating interface phenomena.

References

References
1.
Johnson
,
K.
,
1961
, “
Energy Dissipation at Spherical Surfaces in Contact Transmitting Oscillating Forces
,”
J. Mech. Eng. Sci.
,
3
(
4
), pp.
362
368
.10.1243/JMES_JOUR_1961_003_048_02
2.
Cattaneo
,
C.
,
1938
, “
Sul contatto di due corpi elastici: Distribuzione locale degli sforzi
,”
Reconditi dell Academia Nazionale dei Lincei
,
27
, pp.
342
348
, 434–436, 474–478.
3.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
, pp.
259
268
.
4.
Hertz
,
H.
,
1881
, “
On the Contact of Elastic Bodies
,”
J. Rein. Angew. Math.
,
92
, pp.
56
57
.
5.
Cox
,
H.
,
1952
, “
The Elasticity and Strength of Paper and Other Fibrous Materials
,”
Br. J. Appl. Phys.
,
3
(
3
), pp.
72
79
.10.1088/0508-3443/3/3/302
6.
Clyne
,
T.
,
1989
, “
A Simple Development of the Shear Lag Theory Appropriate for Composites With a Relatively Small Modulus Mismatch
,”
Mater. Sci. Eng., A
,
122
(
2
), pp.
183
192
.10.1016/0921-5093(89)90629-1
7.
Hartog
,
J. D.
,
1931
, “
Forced Vibrations With Combined Coulomb and Viscous Friction
,”
ASME J. Appl. Mech.
,
APM-53-9
, pp.
107
115
.
8.
Menq
,
C.-H.
,
Griffin
,
J.
, and
Bielak
,
J.
,
1986
, “
The Influence of a Variable Normal Load on the Forced Vibration of a Frictionally Damped Structure
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
300
305
.10.1115/1.3239903
9.
Wang
,
J.
, and
Shieh
,
W.
,
1991
, “
The Influence of Variable Friction Coefficient on the Dynamic Behavior of a Blade With Friction Damper
,”
J. Sound Vib.
,
149
(
1
), pp.
137
145
.10.1016/0022-460X(91)90916-8
10.
Iwan
,
W.
,
1966
, “
A Distributed–Element Model for Hysteresis and Its Steady–State Dynamic Response
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
893
900
.10.1115/1.3625199
11.
Sanliturk
,
K.
,
Imregun
,
M.
, and
Ewins
,
D. J.
,
1997
, “
Harmonic Balance Vibration Analysis of Turbine Blades With Friction Dampers
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
96
103
.10.1115/1.2889693
12.
Sextro
,
W.
,
1999
, “
Forced Vibration of Elastic Structures With Frictional Contacts
,”
ASME 1999 Design Engineering Technical Conferences
, Las Vegas, NV, Sept. 12–15,
ASME
Paper No. DETC99/VIB-8180.
13.
Berger
,
E.
, and
Krousgrill
,
C.
,
2002
, “
On Friction Damping Modeling Using Bilinear Hysteresis Elements
,”
ASME J. Vib. Acoust.
,
124
(
3
), pp.
367
375
.10.1115/1.1473831
14.
Rajaei
,
M.
, and
Ahmedian
,
H.
,
2014
, “
Development of Generalized Iwan Model to Simulate Frictional Contact With Variable Normal Loads
,”
Appl. Math. Model.
,
38
(
15–16
), pp.
4006
4018
.10.1016/j.apm.2014.01.008
15.
Ahmedian
,
H.
, and
Rajaei
,
M.
,
2014
, “
Identification of Iwan Distribution Density Function in Frictional Contacts
,”
J. Sound Vib.
,
333
(
15
), pp.
3382
3393
.10.1016/j.jsv.2014.03.021
16.
Xiao
,
H.
,
Shao
,
Y.
, and
Xu
,
J.
,
2014
, “
Investigation Into the Energy Dissipation of a Lap Joint Using the One-Dimensional Microslip Friction Model
,”
Eur. J. Mech. A
,
43
, pp.
1
8
.10.1016/j.euromechsol.2013.08.003
17.
Argatov
,
I.
, and
Butcher
,
E.
,
2012
, “
On the Iwan Models for Lap-Type Bolted Joints
,”
Int. J. Non-Linear Mech.
,
46
(
2
), pp.
347
356
.10.1016/j.ijnonlinmec.2010.09.018
18.
Quinn
,
D.
,
2001
, “
Distributed Friction and Microslip in Mechanical Joints With Varying Degrees-of-Freedom
,”
ASME Design Engineering Technical Conferences
, Pittsburgh, PA, Sept. 9–12,
ASME
Paper No. DETC2001/VIB-21514.
19.
Quinn
,
D.
, and
Segalman
,
D.
,
2002
, “
Using Series–Series Iwan–Type Models for Understanding Joint Dynamics
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2002–4120J.
20.
Deshmukh
,
D.
,
Berger
,
E.
,
Mackin
,
T.
, and
Inglis
,
H.
,
2005
, “
Convergence Behaviors of Reduced–Order Models for Frictional Contacts
,”
ASME J. Vib. Acoust.
,
127
(
4
), pp.
370
381
.10.1115/1.1924645
21.
Ferri
,
A. A.
, and
Heck
,
B. S.
,
1995
, “
Vibration Analysis of Dry Friction Damped Turbine Blades Using Singular Perturbation Theory
,”
ASME J. Vib. Acoust.
,
120
(2), pp. 588–595.10.1115/1.2893868
22.
Eriten
,
M.
,
Polycarpou
,
A.
, and
Bergman
,
L.
,
2012
, “
A Physics-Based Friction Model and Integration to a Simple Dynamical System
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
051012
.10.1115/1.4006182
23.
Kiang
,
J.-W.
, and
Feeny
,
B.
,
2011
, “
Balancing Energy to Estimate Damping in a Forced Oscillator With Compliant Contact
,”
J. Sound Vib.
,
330
(
9
), pp.
2049
2061
.10.1016/j.jsv.2010.11.015
24.
Ferri
,
A.
,
1995
, “
Friction Damping and Isolation Systems
,”
ASME J. Vib. Acoust.
,
117
(B), pp.
196
206
.10.1115/1.2838663
25.
Berger
,
E.
,
2002
, “
Friction Modeling for Dynamic System Simulation
,”
ASME Appl. Mech. Rev.
,
55
(
6
), pp.
535
577
.10.1115/1.1501080
26.
Deshmukh
,
D.
,
Berger
,
E.
,
Begley
,
M. R.
, and
Komaragiri
,
U.
,
2007
, “
Correlation of a Discrete Friction (Iwan) Element and Continuum Approaches to Predict Interface Sliding Behavior
,”
Eur. J. Mech. A
,
26
(
2
), pp.
212
224
.10.1016/j.euromechsol.2006.05.001
27.
Hutchinson
,
J.
, and
Jensen
,
H.
,
1990
, “
Models of Fiber Debonding and Pullout in Brittle Composites With Friction
,”
Mech. Mater.
,
9
(
2
), pp.
139
163
.10.1016/0167-6636(90)90037-G
28.
Rogers
,
P.
, and
Boothroyd
,
G.
,
1975
, “
Damping at Metallic Interfaces Subjected to Oscillating Tangential Loads
,”
ASME J. Manuf. Sci. Eng.
,
97
(3), 1087–1093.10.1115/1.3438660
29.
Smallwood
,
D.
,
Gregory
,
D.
, and
Coleman
,
R.
,
2000
, “
Damping Investigations of a Simplified Frictional Shear Joint
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2000-1929C.
30.
Vingsbo
,
O.
, and
Söderberg
,
S.
,
1988
, “
On Fretting Maps
,”
Wear
,
126
(
2
), pp.
131
147
.10.1016/0043-1648(88)90134-2
31.
Goodman
,
L.
, and
Brown
,
C.
,
1962
, “
Energy Dissipation in Contact Friction: Constant Normal and Cyclic Tangential Loading
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
17
22
.10.1115/1.3636453
32.
Lobitz
,
D.
,
Gregory
,
D. L.
, and
Smallwood
,
D. O.
,
2000
, “
Comparison of Finite Element Predictions to Measurements From the Sandia Microslip Experiment
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2000-2799C.
33.
Segalman
,
D.
,
2001
, “
An Initial Overview of Iwan Modeling for Mechanical Joints
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2001-0811.
You do not currently have access to this content.