Many methods to detect, quantify, or reconstruct acoustic sources exist in the literature and are widely used in industry (near-field acoustic holography, inverse boundary element method, etc.). However, the source identification in a reverberant or nonanechoic environment on an irregularly shaped structure is still an open issue. In this context, the inverse patch transfer functions (iPTF) method first introduced by Aucejo et al. (2010, “Identification of Source Velocities on 3D Structures in Non-Anechoic Environments: Theoretical Background and Experimental Validation of the Inverse Patch Transfer Functions Method,” J. Sound Vib., 329(18), pp. 3691–3708) can be a suitable method. Indeed, the iPTF method has been developed to identify source velocity on complex geometries and in a nonanechoic environment. However, to obtain good results, the application of the method must follow rigorous criteria that were not fully investigated yet. In addition, as it was first defined, the iPTF method only provides source velocity while wall pressure or intensity should also give useful information to engineers. In the present article, a procedure to identify wall pressure and intensity of the source without any additional measurement is proposed. This procedure only needs simple numerical postprocessing. Using this new intensity identification, the influence of background noise, evanescent waves, and mesh discretization are illustrated on numerical examples. Finally, an experiment on a vibrating plate is shown to illustrate the iPTF procedure.

References

References
1.
Maynard
,
J. D.
,
Williams
,
E. G.
, and
Lee
,
Y.
,
1985
, “
Nearfield Acoustic Holography: I. Theory of the Generalized Holography and the Development of NAH
,”
J. Acoust. Soc. Am.
,
78
(
4
), pp.
1395
1413
.10.1121/1.392911
2.
Williams
,
E. G.
,
1999
,
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
,
Academic Press
,
London, UK
.
3.
Williams
,
E. G.
,
Dardy
,
H. D.
, and
Washburn
,
K. B.
,
1987
, “
Generalized Nearfield Acoustical Holography for Cylindrical Geometry: Theory and Experiment
,”
J. Acoust. Soc. Am.
,
81
(
2
), pp.
389
407
.10.1121/1.394904
4.
Wu
,
S. F.
,
2004
, “
Hybrid Nearfield Acoustic Holography
,”
J. Acoust. Soc. Am.
,
115
(
1
), pp.
207
217
.10.1121/1.1631415
5.
Pézerat
,
C.
,
Leclère
,
Q.
,
Totaro
,
N.
, and
Pachebat
,
M.
,
2009
, “
Identification of Vibration Excitations From Acoustic Measurements Using Near Field Acoustic Holography and the Force Analysis Technique
,”
J. Sound Vib.
,
326
(
3–5
), pp.
540
556
.10.1016/j.jsv.2009.05.010
6.
Langrenne
,
C.
,
Melon
,
M.
, and
Garcia
,
A.
,
2007
, “
Boundary Element Method for the Acoustic Characterization of a Machine in Bounded Noisy Environment
,”
J. Acoust. Soc. Am.
,
121
(
5
), pp.
2750
2757
.10.1121/1.2713670
7.
Langrenne
,
C.
,
Melon
,
M.
, and
Garcia
,
A.
,
2009
, “
Measurement of Confined Acoustic Sources Using Near-Field Acoustic Holography
,”
J. Acoust. Soc. Am.
,
126
(
3
), pp.
1250
1256
.10.1121/1.3183594
8.
Aucejo
,
M.
,
Totaro
,
N.
, and
Guyader
,
J.-L.
,
2010
, “
Identification of Source Velocities on 3D structures in Non-Anechoic Environments: Theoretical Background and Experimental Validation of the Inverse Patch Transfer Functions Method
,”
J. Sound Vib.
,
329
(
18
), pp.
3691
3708
.10.1016/j.jsv.2010.03.032
9.
Ouisse
,
M.
,
Maxit
,
L.
,
Cacciolati
,
C.
, and
Guyader
,
J.-L.
,
2005
, “
Patch Transfer Functions as a Tool to Couple Linear Acoustic Problems
,”
ASME J. Vib. Acoust.
,
127
(
5
), pp.
458
466
.10.1115/1.2013302
10.
Ouisse
,
M.
,
Maxit
,
L.
,
Cacciolati
,
C.
, and
Guyader
,
J.-L.
,
2004
, “
Application of a Substructuring Approach for Linear Acoustics in Automotive Context
,” 3rd International Congress and Exposition on Noise Control Engineering (InterNoise 2004), Prague, Czech Republic, Aug. 22–25, p.
70
.
11.
Totaro
,
N.
,
Andro
,
B.
,
Péteul
,
C.
, and
Guyader
,
J.-L.
,
2007
, “
Extension of the Patch Transfer Functions Method (PTF Method) to High Frequency Domain (Sub-Cavities Decomposition)
,” 36th Noise Control Engineering International Congress and Exhibition (Inter-Noise 2007), Istanbul, Turkey, Aug. 28–31, p.
897
.
12.
Totaro
,
N.
, and
Guyader
,
J.-L.
,
2012
, “
Efficient Positioning of Absorbing Material in Complex Systems by Using the Patch Transfer Function Method
,”
J. Sound Vib.
,
331
(
13
), pp.
3130
3143
.10.1016/j.jsv.2012.02.016
13.
Vigoureux
,
D.
,
Totaro
,
N.
, and
Guyader
,
J.-L.
,
2011
, “
Identification des Champs de Vitesse, Pression et Intentié à l'aide de la Méthode PTF
,” 20e Congrès Français de Mécanique, Besançon, France, Aug. 28–Sept. 2, p.
1180
.
14.
Hansen
,
P. C.
,
1998
,
Rank-Deficient and Discrete Ill-Posed Problems
,
SIAM
,
Philadelphia, PA
.
15.
Leclère
,
Q.
,
2009
, “
Acoustic Imaging Using Under-Determined Inverse Approaches: Frequency Limitations and Optimal Regularization
,”
J. Sound Vib.
,
321
(
3–5
), pp.
605
619
.10.1016/j.jsv.2008.10.022
16.
Crocker
,
M. J.
,
2007
,
Handbook of Noise and Vibration Control
,
Wiley
,
New York
.
17.
Williams
,
E. G.
,
1998
, “
Supersonic Acoustic Intensity on Planar Sources
,”
J. Acoust. Soc. Am.
,
104
(
5
), pp.
2845
2850
.10.1121/1.423868
18.
Fernandez-Grande
,
E.
,
Jacobsen
,
F.
, and
Leclère
,
Q.
,
2012
, “
Direct Formulation of the Supersonic Acoustic Intensity in Space Domain
,”
J. Acoust. Soc. Am.
,
131
(
1
), pp.
186
193
.10.1121/1.3662052
19.
Corrêa-Junior
,
C. A.
, and
Tenenbaum
,
R. A.
,
2013
, “
Useful Intensity: A Technique to Identify Radiating Regions on Arbitrarily Shaped Surfaces
,”
J. Sound Vib.
,
332
(
6
), pp.
1567
1584
.10.1016/j.jsv.2012.10.031
20.
Pezerat
,
C.
, and
Guyader
,
J.-L.
,
2000
, “
Force Analysis Technique: Reconstruction of Force Distribution on Plates
,”
Acta Acustica
,
86
(
2
), pp.
322
332
.
21.
Pearson
,
K.
,
1901
, “
On Line and Places of Closest Fit to Systems of Points in Space
,”
Philos. Mag.
,
2
(
6
), pp.
559
572
.10.1080/14786440109462720
You do not currently have access to this content.