Fluidic flexible matrix composite (F2MC) tubes with resonant fluidic circuits can absorb vibration at a specific frequency when bonded to flexible structures. The transverse structural vibration applies cyclic axial strain to the F2MC tubes. The anisotropic elastic properties of the composite tube amplify the axial strain to produce large internal volume change. The volume change forces fluid through a flow port and into an external accumulator. The fluid inertance in the flow port (inertia track) and the stiffness of the accumulator are analogous to the vibration absorbing mass and stiffness in a conventional tuned vibration absorber. An analytical model of an F2MC-integrated cantilever beam is developed based on Euler–Bernoulli beam theory and Lekhnitskii's solution for anisotropic layered tubes. The collocated tip force to tip displacement analytical transfer function of the coupled system is derived. Experimental testing is conducted on a laboratory-scale F2MC beam structure that uses miniature tubes and fluidic components. The resonant peak becomes an absorber notch in the frequency response function (FRF) if the inertia track length is properly tuned. Tuning the fluid bulk modulus and total flow resistance in the theoretical model produces results that match the experiment well, predicting a magnitude reduction of 35 dB at the first resonance using an F2MC absorber. Based on the experimentally validated model, analysis results show that the cantilever beam vibration can be reduced by more than 99% with optimally designed tube attachment points and flow port geometry.

References

References
1.
Harris
,
C. M.
, and
Piersol
,
A. G.
,
2002
,
Harris' Shock and Vibration Handbook
, Vol.
5
,
McGraw-Hill
, New York.
2.
Frahm
,
H.
,
1911
, “
Device for Damping Vibrations of Bodies
,” U.S. Patent No. 989,958.
3.
Ormondroyd
,
J.
, and
den Hartog
,
J. P.
,
1928
, “
The Theory of the Dynamic Vibration Absorber
,”
ASME Appl. Mech.
,
50
(
17
), pp.
9
15
.
4.
Roberson
,
R. E.
,
1952
, “
Synthesis of a Nonlinear Dynamic Vibration Absorber
,”
J. Franklin Inst.
,
254
(
3
), pp.
205
220
.10.1016/0016-0032(52)90457-2
5.
Hunt
,
J. B.
, and
Nissen
,
J. C.
,
1982
, “
The Broadband Dynamic Vibration Absorber
,”
J. Sound Vib.
,
83
(
4
), pp.
573
578
.10.1016/S0022-460X(82)80108-9
6.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Dover Publication
,
Mineola, NY
.
7.
Rusovici
,
R.
,
Dosch
,
J. J.
, and
Lesieutre
,
G. A.
,
2002
, “
Design of a Single-Crystal Piezoceramic Vibration Absorber
,”
J. Intell. Mater. Syst. Struct.
,
13
(
11
), pp.
705
712
.10.1177/1045389X02013011002
8.
Igusa
,
T.
, and
Xu
,
K.
,
1994
, “
Vibration Control Using Multiple Tuned Mass Dampers
,”
J. Sound Vib.
,
175
(
4
), pp.
491
503
.10.1006/jsvi.1994.1341
9.
Rana
,
R.
, and
Soong
,
T. T.
,
1998
, “
Parametric Study and Simplified Design of Tuned Mass Dampers
,”
Eng. Struct.
,
20
(
3
), pp.
193
204
.10.1016/S0141-0296(97)00078-3
10.
Sun
,
J. Q.
,
Jolly
,
M. R.
, and
Norris
,
M. A.
,
1995
, “
Passive, Adaptive and Active Tuned Vibration Absorbers: A Survey
,”
ASME J. Mech. Des.
,
117
(
B
), pp.
234
242
.10.1115/1.2836462
11.
Soong
,
T. T.
, and
Dargush
,
G. F.
,
1997
,
Passive Energy Dissipation Systems in Structural Engineering
,
Wiley
,
New York
.
12.
Lee
,
S.
, and
Sinha
,
A.
,
1986
, “
Design of an Active Vibration Absorber
,”
J. Sound Vib.
,
109
(
2
), pp.
347
352
.10.1016/S0022-460X(86)80014-1
13.
Walsh
,
P. L.
, and
Lamancusa
,
J. S.
,
1992
, “
A Variable Stiffness Vibration Absorber for Minimization of Transient Vibrations
,”
J. Sound Vib.
,
158
(
2
), pp.
195
211
.10.1016/0022-460X(92)90045-Y
14.
Koo
,
J. H.
,
Ahmadian
,
M.
,
Setareh
,
M.
, and
Murray
,
T.
,
2004
, “
In Search of Suitable Control Methods for Semi-Active Tuned Vibration Absorbers
,”
J. Vibration Control
,
10
(
2
), pp.
163
174
.10.1177/1077546304032020
15.
Housner
,
G. W.
,
Bergman
,
L. A.
,
Caughey
,
T. K.
,
Chassiakos
,
A. G.
,
Claus
,
R. O.
,
Masri
,
S. F.
,
Skelton
,
R. E.
,
Soong
,
T. T.
,
Spencer
,
B. F.
, and
Yao
,
J. T. P.
,
1997
, “
Structural Control: Past, Present, and Future
,”
J. Eng. Mech.
,
123
(
9
), pp.
897
971
.10.1061/(ASCE)0733-9399(1997)123:9(897)
16.
Preumont
,
A.
,
2002
,
Vibration Control of Active Structures: An Introduction
,
2nd ed.
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
17.
Williams
,
K.
,
Chiu
,
G.
, and
Bernhard
,
R.
,
2002
, “
Adaptive-Passive Absorbers Using Shape-Memory Alloys
,”
J. Sound Vib.
,
249
(
5
), pp.
835
848
.10.1006/jsvi.2000.3496
18.
Hagood
,
N. W.
, and
von Flotow
,
A.
,
1991
, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
,
146
(
2
), pp.
243
268
.10.1016/0022-460X(91)90762-9
19.
Hollkamp
,
J. J.
, and
Starchville
,
T. F.
Jr.
,
1994
, “
A Self-Tuning Piezoelectric Vibration Absorber
,”
J. Intell. Mater. Syst. Struct.
,
5
(
4
), pp.
559
566
.10.1177/1045389X9400500412
20.
Davis
,
C. L.
,
Lesieutre
,
G. A.
, and
Dosch
,
J.
,
1997
. “
A Tunable Electrically Shunted Piezoceramic Vibration Absorber
,”
Proc. SPIE
,
3045
, pp.
51
59
.10.1117/12.274188
21.
Deng
,
H.
,
Gong
,
X.
, and
Wang
,
L.
,
2006
, “
Development of an Adaptive Tuned Vibration Absorber With Magnetorheological Elastomer
,”
Smart Mater. Struct.
,
15
(
5
), pp.
111
116
.10.1088/0964-1726/15/5/N02
22.
Sakai
,
F.
,
Takaeda
,
S.
, and
Tamaki
,
T.
,
1989
, “
Tuned Liquid Column Damper-New Type Device for Suppression of Building Vibrations
,”
International Conference on Highrise Buildings
, Nanjing, China, Mar. 25–27, pp.
926
931
.
23.
Yalla
,
S. K.
, and
Kareem
,
A.
,
2000
, “
Optimum Absorber Parameters for Tuned Liquid Column Dampers
,”
J. Struct. Eng.
,
126
(
8
), pp.
906
915
.10.1061/(ASCE)0733-9445(2000)126:8(906)
24.
Yalla
,
S. K.
, and
Kareem
,
A.
,
2003
, “
Semiactive Tuned Liquid Column Dampers: Experimental Study
,”
J. Struct. Eng.
,
129
(
7
), pp.
960
971
.10.1061/(ASCE)0733-9445(2003)129:7(960)
25.
Gao
,
H.
,
Kwok
,
K. C. S.
, and
Samali
,
B.
,
1997
, “
Optimization of Tuned Liquid Column Dampers
,”
Eng. Struct.
,
19
(
6
), pp.
476
486
.10.1016/S0141-0296(96)00099-5
26.
Sadek
,
F.
,
Mohraz
,
B.
, and
Lew
,
H. S.
,
1998
, “
Single-and Multiple-Tuned Liquid Column Dampers for Seismic Applications
,”
Earthquake Eng. Struct. Dyn.
,
27
(
5
), pp.
439
464
.10.1002/(SICI)1096-9845(199805)27:5<439::AID-EQE730>3.0.CO;2-8
27.
Halwes
,
D. R.
,
1980
, “
LIVE—Liquid Inertia Vibration Eliminator
,” American Helicopter Society 36th Annual Forum, Washington, DC, May 13–14, Paper No. 80‐22.
28.
McGuire
,
D. P.
,
2003
, “
High Stiffness (“Rigid”) Helicopter Pylon Vibration Isolation Systems
,” American Helicopter Society 59th Annual Forum, Phoenix, AZ, May 6–8, pp. 649–658.
29.
Philen
,
M. K.
,
Shan
,
Y.
,
Prakash
,
P.
,
Wang
,
K. W.
,
Rahn
,
C. D.
,
Zydney
,
A. L.
, and
Bakis
,
C. E.
,
2007
, “
Fibrillar Network Adaptive Structure With Ion-Transport Actuation
,”
J. Intell. Mater. Syst. Struct.
,
18
(
4
), pp.
323
334
.10.1177/1045389X06066097tions
30.
Liu
,
W.
, and
Rahn
,
C. D.
,
2003
, “
Fiber-Reinforced Membrane Models of McKibben Actuators
,”
ASME J. Appl. Mech.
,
70
(
6
), pp.
853
859
.10.1115/1.1630812
31.
Shan
,
Y.
,
Philen
,
M. K.
,
Bakis
,
C. E.
,
Wang
,
K. W.
, and
Rahn
,
C. D.
,
2006
, “
Nonlinear-Elastic Finite Axisymmetric Deformation of Flexible Matrix Composite Membranes Under Internal Pressure and Axial Force
,”
Compos. Sci. Technol.
,
66
(
15
), pp.
3053
3063
.10.1016/j.compscitech.2006.01.002
32.
Shan
,
Y.
,
Philen
,
M.
,
Lotfi
,
A.
,
Li
,
S.
,
Bakis
,
C. E.
,
Rahn
,
C. D.
, and
Wang
,
K. W.
,
2009
, “
Variable Stiffness Structures Utilizing Fluidic Flexible Matrix Composites
,”
J. Intell. Mater. Syst. Struct.
,
20
(
4
), pp.
443
456
.10.1177/1045389X08095270
33.
Zhu
,
B.
,
Rahn
,
C. D.
, and
Bakis
,
C. E.
,
2011
, “
Tailored Fluidic Composites for Stiffness or Volume Change
,”
ASME
Paper No. SMASIS2011-4962.10.1115/SMASIS2011-4962
34.
Zhu
,
B.
,
Rahn
,
C. D.
, and
Bakis
,
C. E.
,
2012
, “
Actuation of Fluidic Flexible Matrix Composites in Structural Media
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
269
278
.10.1177/1045389X11428676
35.
Wimmer
,
B. M.
,
Zhu
,
B.
,
Bakis
,
C. E.
, and
Rahn
,
C. D.
,
2012
, “
Actuation Behavior of Multi-Layer Flexible Matrix Composite Tubes With Internal Pressurization
,”
Society for the Advancement of Materials and Process Engineering
Conference (SAMPE 2012), Baltimore, MD, May 21–24.
36.
Lotfi-Gaskarimahalle
,
A.
,
Scarborough
III,
L. H.
,
Rahn
,
C. D.
, and
Smith
,
E. C.
,
2009
, “
Fluidic Composite Tuned Vibration Absorbers
,”
ASME
Paper No. SMASIS2009-1349.10.1115/SMASIS2009-1349
37.
Li
,
S.
, and
Wang
,
K. W.
,
2012
, “
On the Dynamic Characteristics of Biological Inspired Multicellular Fluidic Flexible Matrix Composite Structures
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
291
300
.10.1177/1045389X11424218
38.
Lekhnitskii
,
S. G.
,
1963
,
Theory of Elasticity of an Anisotropic Body
,
Holden-Day Inc.
,
San Francisco, CA
.
39.
Sun
,
C. T.
, and
Li
,
S.
,
1988
, “
Three Dimensional Effective Elastic Constants for Thick Laminates
,”
J. Compos. Mater.
,
22
(
7
), pp.
629
645
.10.1177/002199838802200703
40.
Boresi
,
A. P.
, and
Schmidt
,
R. J.
,
2003
, “
The Thick-Wall Cylinder
,”
Advanced Mechanics of Materials
,
6th ed.
,
Wiley
,
New York
.
41.
Kundu
,
P. K.
, and
Cohen
,
I. M.
,
2004
,
Fluid Mechanics
,
Elsevier Academic
,
Boston, MA
.
42.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
New York
.
43.
Vashisth
,
A.
,
Zhu
,
B.
,
Bakis
,
C. E.
, and
Rahn
,
C. D.
,
2013
, “
Evaluation of Millimeter-Size Fluidic Flexible Matrix Composite Tubes
,”
ASME
Paper No. SMASIS2013-3344.10.1115/SMASIS2013-3344
44.
Fu
,
Z. F.
, and
He
,
J.
,
2001
,
Modal Analysis
,
Butterworth–Heinemann
, Oxford, UK.
You do not currently have access to this content.