Gears are widely used in machines to transmit torque from one shaft to another shaft and to change the speed of a power source. Gear failure is one of the major causes for mechanical transmission system breakdown. Therefore, early gear faults must be immediately detected prior to its failure. Once early gear faults are diagnosed, gear remaining useful life (RUL) should be estimated to prevent any unexpected gear failure. In this paper, an intelligent prognostic system is developed for gear performance degradation assessment and RUL estimation. For gear performance degradation assessment, which aims to monitor current gear health condition, first, the frequency spectrum of gear acceleration error signal is mathematically analyzed to design a high-order complex Comblet for extracting gear fault related signatures. Then, two health indicators called heath indicator 1 and health indicator 2 are constructed to detect early gear faults and assess gear performance degradation, respectively, using two individual dynamic Bayesian networks. For gear RUL estimation, which aims to predict future gear health condition, a general sequential Monte Carlo algorithm is applied to iteratively infer gear failure probability density function (FPDF), which is used to predict gear residual lifetime. One case study is investigated to illustrate how the developed prognostic system works. The vibration data collected from a gearbox accelerated life test are used in this paper, where the gearbox started from a brand-new state, and ran until gear tooth failure. The results show that the developed prognostic system is able to detect early gear faults, track gear performance degradation, and predict gear RUL.

References

References
1.
Yang
,
J.
, and
Yang
,
P.
,
2013
, “
Random Vibration Analysis of Planetary Gear Trains
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021005
.10.1115/1.4023053
2.
Syta
,
A.
,
Jonak
,
J.
,
Jedliński
,
Ł.
, and
Litak
,
G.
,
2012
, “
Failure Diagnosis of a Gear Box by Recurrences
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041006
.10.1115/1.4005846
3.
Ziaran
,
S.
, and
Darula
,
R.
,
2013
, “
Determination of the State of Wear of High Contact Ratio Gear Sets by Means of Spectrum and Cepstrum Analysis
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021008
.10.1115/1.4023208
4.
Bechhoefer
,
E.
, and
Kingsley
,
M.
, 2009, “
A Review of Time Synchronous Average Algorithms
,”
Annual Conference of the Prognostics and Health Management Society
, San Diego, CA, Sept. 27–Oct. 1.
5.
Miller
,
A. J.
,
1999
, “
A New Wavelet Basis for the Decomposition of Gear Motion Error Signals and Its Application to Gearbox Diagnostics
,” M.Sc. thesis, Pennsylvania State University, State College, PA.
6.
Wang
,
W. J.
, and
McFadden
,
P. D.
,
1995
, “
Decomposition of Gear Motion Signals and Its Application to Gearbox Diagnostics
,”
ASME J. Vib. Acoust.
,
117
(
3
A), pp.
363
369
.10.1115/1.2874462
7.
Lin
,
D.
,
Wiseman
,
M.
,
Banjevic
,
D.
, and
Jardine
,
A. K. S.
,
2004
, “
An Approach to Signal Processing and Condition-Based Maintenance for Gearboxes Subject to Tooth Failure
,”
Mech. Syst. Signal Process.
,
18
(
5
), pp.
993
1007
.10.1016/j.ymssp.2003.10.005
8.
Zhan
,
Y.
, and
Makis
,
V.
,
2006
, “
A Robust Diagnostic Model for Gearboxes Subject to Vibration Monitoring
,”
J. Sound Vib.
,
290
(
3–5
), pp.
928
955
.10.1016/j.jsv.2005.04.018
9.
Zhan
,
Y.
,
Makis
,
V.
, and
Jardine
,
A. K. S.
,
2006
, “
Adaptive State Detection of Gearboxes Under Varying Load Conditions Based on Parametric Modelling
,”
Mech. Syst. Signal Process.
,
20
(
1
), pp.
188
221
.10.1016/j.ymssp.2004.08.004
10.
Zhan
,
Y.
, and
Mechefske
,
C. K.
,
2007
, “
Robust Detection of Gearbox Deterioration Using Compromised Autoregressive Modeling and Kolmogorov–Smirnov Test Statistic—Part I: Compromised Autoregressive Modeling With the Aid of Hypothesis Tests and Simulation Analysis
,”
Mech. Syst. Signal Process.
,
21
(
5
), pp.
1953
1982
.10.1016/j.ymssp.2006.11.005
11.
Zhan
,
Y.
, and
Mechefske
,
C. K.
,
2007
, “
Robust Detection of Gearbox Deterioration Using Compromised Autoregressive Modeling and Kolmogorov–Smirnov Test Statistic. Part II: Experiment and Application
,”
Mech. Syst. Signal Process.
,
21
(
5
), pp.
1983
2011
.10.1016/j.ymssp.2006.11.006
12.
Miao
,
Q.
, and
Makis
,
V.
,
2007
, “
Condition Monitoring and Classification of Rotating Machinery Using Wavelets and Hidden Markov Models
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
840
855
.10.1016/j.ymssp.2006.01.009
13.
Miao
,
Q.
,
Huang
,
H.-Z.
, and
Fan
,
X.
,
2007
, “
Singularity Detection in Machinery Health Monitoring Using Lipschitz Exponent Function
,”
J. Mech. Sci. Technol.
,
21
(
5
), pp.
737
744
.10.1007/BF02916351
14.
Shao
,
Y.
, and
Mechefske
,
C. K.
,
2009
, “
Gearbox Vibration Monitoring Using Extended Kalman Filters and Hypothesis Tests
,”
J. Sound Vib.
,
325
(
3
), pp.
629
648
.10.1016/j.jsv.2009.03.029
15.
Wang
,
D.
,
Miao
,
Q.
, and
Kang
,
R.
,
2009
, “
Robust Health Evaluation of Gearbox Subject to Tooth Failure With Wavelet Decomposition
,”
J. Sound Vib.
,
324
(
3–5
), pp.
1141
1157
.10.1016/j.jsv.2009.02.013
16.
Wang
,
D.
,
Tse
,
P. W.
,
Guo
,
W.
, and
Miao
,
Q.
,
2011
, “
Support Vector Data Description for Fusion of Multiple Health Indicators for Enhancing Gearbox Fault Diagnosis and Prognosis
,”
Meas. Sci. Technol.
,
22
(
2
), p.
025102
.10.1088/0957-0233/22/2/025102
17.
Yang
,
M.
, and
Makis
,
V.
,
2010
, “
ARX Model-Based Gearbox Fault Detection and Localization Under Varying Load Conditions
,”
J. Sound Vib.
,
329
(
24
), pp.
5209
5221
.10.1016/j.jsv.2010.07.001
18.
Wang
,
X.
,
Makis
,
V.
, and
Yang
,
M.
,
2010
, “
A Wavelet Approach to Fault Diagnosis of a Gearbox Under Varying Load Conditions
,”
J. Sound Vib.
,
329
(
9
), pp.
1570
1585
.10.1016/j.jsv.2009.11.010
19.
Ye
,
Z.-S.
, and
Chen
,
N.
,
2013
, “
The Inverse Gaussian Process as a Degradation Model
,”
Technometrics
,
56
(
3
), pp.
302
311
.10.1080/00401706.2013.830074
20.
Si
,
X.-S.
,
Wang
,
W.
,
Hu
,
C.-H.
, and
Zhou
,
D.-H.
,
2011
, “
Remaining Useful Life Estimation–A Review on the Statistical Data Driven Approaches
,”
Eur. J. Oper. Res.
,
213
(
1
), pp.
1
14
.10.1016/j.ejor.2010.11.018
21.
Pecht
,
M.
,
2008
,
Prognostics and Health Management of Electronics
,
Wiley-Interscience
,
London, UK
.
22.
Wang
,
D.
,
Miao
,
Q.
, and
Pecht
,
M.
,
2013
, “
Prognostics of Lithium-Ion Batteries Based on Relevance Vectors and a Conditional Three-Parameter Capacity Degradation Model
,”
J. Power Sources
,
239
(1), pp.
253
264
.10.1016/j.jpowsour.2013.03.129
23.
Sun
,
J.
,
Zuo
,
H.
,
Wang
,
W.
, and
Pecht
,
M. G.
,
2012
, “
Application of a State Space Modeling Technique to System Prognostics Based on a Health Index for Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
28
(
1
), pp.
585
596
.10.1016/j.ymssp.2011.09.029
24.
He
,
W.
,
Williard
,
N.
,
Osterman
,
M.
, and
Pecht
,
M.
,
2011
, “
Prognostics of Lithium-Ion Batteries Based on Dempster–Shafer Theory and the Bayesian Monte Carlo Method
,”
J. Power Sources
,
196
(
23
), pp.
10314
10321
.10.1016/j.jpowsour.2011.08.040
25.
Zio
,
E.
, and
Peloni
,
G.
,
2011
, “
Particle Filtering Prognostic Estimation of the Remaining Useful Life of Nonlinear Components
,”
Reliab. Eng. Syst. Saf.
,
96
(
3
), pp.
403
409
.10.1016/j.ress.2010.08.009
26.
Cadini
,
F.
,
Zio
,
E.
, and
Avram
,
D.
,
2009
, “
Monte Carlo-Based Filtering for Fatigue Crack Growth Estimation
,”
Probab. Eng. Mech.
,
24
(
3
), pp.
367
373
.10.1016/j.probengmech.2008.10.002
27.
Chen
,
C.
,
Zhang
,
B.
,
Vachtsevanos
,
G.
, and
Orchard
,
M.
,
2011
, “
Machine Condition Prediction Based on Adaptive Neuro-Fuzzy and High-Order Particle Filtering
,”
IEEE Trans. Ind. Electron.
,
58
(
9
), pp.
4353
4364
.10.1109/TIE.2010.2098369
28.
Caesarendra
,
W.
,
Niu
,
G.
, and
Yang
,
B.-S.
,
2010
, “
Machine Condition Prognosis Based on Sequential Monte Carlo Method
,”
Expert Syst. Appl.
,
37
(
3
), pp.
2412
2420
.10.1016/j.eswa.2009.07.014
29.
Miao
,
Q.
,
Xie
,
L.
,
Cui
,
H.
,
Liang
,
W.
, and
Pecht
,
M.
,
2013
, “
Remaining Useful Life Prediction of Lithium-Ion Battery With Unscented Particle Filter Technique
,”
Microelectron. Reliab.
,
53
(
6
), pp.
805
810
.10.1016/j.microrel.2012.12.004
30.
Xing
,
Y.
,
Ma
,
E. W. M.
,
Tsui
,
K.-L.
, and
Pecht
,
M.
,
2013
, “
An Ensemble Model for Predicting the Remaining Useful Performance of Lithium-Ion Batteries
,”
Microelectron. Reliab.
,
53
(
6
), pp.
811
820
.10.1016/j.microrel.2012.12.003
31.
Wang
,
D.
,
Sun
,
S.
, and
Tse
,
P. W.
,
2014
, “
A General Sequential Monte Carlo Method Based Optimal Wavelet Filter: A Bayesian Approach for Extracting Bearing Fault Features
,”
Mech. Syst. Signal Process.
(in press).
32.
Rabiner
,
L.
,
1989
, “
A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition
,”
Proc. IEEE
,
77
(
2
), pp.
257
286
.10.1109/5.18626
33.
Dong
,
M.
, and
He
,
D.
,
2007
, “
Hidden Semi-Markov Model-Based Methodology for Multi-Sensor Equipment Health Diagnosis and Prognosis
,”
Eur. J. Oper. Res.
,
178
(
3
), pp.
858
878
.10.1016/j.ejor.2006.01.041
34.
Dong
,
M.
,
He
,
D.
,
Banerjee
,
P.
, and
Keller
,
J.
,
2006
, “
Equipment Health Diagnosis and Prognosis Using Hidden Semi-Markov Models
,”
Int. J. Adv. Manuf. Technol.
,
30
(
7–8
), pp.
738
749
.10.1007/s00170-005-0111-0
35.
Dong
,
M.
, and
He
,
D.
,
2007
, “
A Segmental Hidden Semi-Markov Model (HSMM)-Based Diagnostics and Prognostics Framework and Methodology
,”
Mech. Syst. Signal Process.
,
21
(
5
), pp.
2248
2266
.10.1016/j.ymssp.2006.10.001
36.
Li
,
Z.
,
He
,
Y.
,
Chu
,
F.
,
Han
,
J.
, and
Hao
,
W.
,
2006
, “
Fault Recognition Method for Speed-Up and Speed-Down Process of Rotating Machinery Based on Independent Component Analysis and Factorial Hidden Markov Model
,”
J. Sound Vib.
,
291
(
1–2
), pp.
60
71
.10.1016/j.jsv.2005.05.020
37.
Moghaddass
,
R.
, and
Zuo
,
M. J.
,
2013
, “
Multistate Degradation and Supervised Estimation Methods for a Condition-Monitored Device
,”
IIE Trans.
,
46
(
2
), pp.
131
148
.10.1080/0740817X.2013.770188
38.
Moghaddass
,
R.
, and
Zuo
,
M. J.
,
2012
, “
A Parameter Estimation Method for a Condition-Monitored Device Under Multi-State Deterioration
,”
Reliab. Eng. Syst. Saf.
,
106
(1), pp.
94
103
.10.1016/j.ress.2012.05.004
39.
Peng
,
Y.
, and
Dong
,
M.
,
2011
, “
A Hybrid Approach of HMM and Grey Model for Age-Dependent Health Prediction of Engineering Assets
,”
Expert Syst. Appl.
,
38
(
10
), pp.
12946
12953
.10.1016/j.eswa.2011.04.091
40.
Ocak
,
H.
,
Loparo
,
K. A.
, and
Discenzo
,
F. M.
,
2007
, “
Online Tracking of Bearing Wear Using Wavelet Packet Decomposition and Probabilistic Modeling: A Method for Bearing Prognostics
,”
J. Sound Vib.
,
302
(
4–5
), pp.
951
961
.10.1016/j.jsv.2007.01.001
41.
Ertunc
,
H. M.
,
Loparo
,
K. A.
, and
Ocak
,
H.
,
2001
, “
Tool Wear Condition Monitoring in Drilling Operations Using Hidden Markov Models (HMMs)
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1363
1384
.10.1016/S0890-6955(00)00112-7
42.
Boutros
,
T.
, and
Liang
,
M.
,
2011
, “
Detection and Diagnosis of Bearing and Cutting Tool Faults Using Hidden Markov Models
,”
Mech. Syst. Signal Process.
,
25
(
6
), pp.
2102
2124
.10.1016/j.ymssp.2011.01.013
43.
Miao
,
Q.
,
Wang
,
D.
, and
Pecht
,
M.
,
2010
, “
A Probabilistic Description Scheme for Rotating Machinery Health Evaluation
,”
J. Mech. Sci. Technol.
,
24
(
12
), pp.
2421
2430
.10.1007/s12206-010-0908-0
44.
Lin
,
J.
, and
Qu
,
L. S.
,
2000
, “
Feature Extraction Based on Morlet Wavelet and Its Application for Mechanical Fault Diagnosis
,”
J. Sound Vib.
,
234
(
1
), pp.
135
148
.10.1006/jsvi.2000.2864
45.
Arulampalam
,
M. S.
,
Maskell
,
S.
,
Gordon
,
N.
, and
Clapp
,
T.
,
2002
, “
A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking
,”
IEEE Trans. Signal. Process.
,
50
(
2
), pp.
174
188
.10.1109/78.978374
You do not currently have access to this content.