Drillstrings used for oil and gas exploration and extraction consist of a drillpipe (slender columns on the order of 3–5 km long), drill collars (DCs) (thick-walled large-diameter pipes), stabilizers (cylindrical elements with short sections and diameter near that of the borehole), and a rock-cutting tool that uses rotational energy to penetrate the soil. Several types of vibrations ensue from these motions and play a major role in added costs resulting from unforeseen events such as abandoning holes, replacing bits, and fishing severed bottom-hole assemblies (BHAs). It is thus of critical importance to understand, predict, and mitigate the severe vibrations experienced by drillstrings and BHA to optimize drilling time while lowering fuel consumption and related emissions of NOX and/or other pollutants. In this paper, we present a dynamical analysis of the behavior of drillstrings due to the violent lateral vibrations (LVs) DCs may experience as a result of rotating drillstrings. The behavior is represented by a system of two coupled nonlinear ordinary equations that are integrated numerically with a finite element analysis based on Timoshenko beam (TB) formulation combined to a modal condensation technique to reduce the computational time. Various nonlinear dynamical analysis tools, such as frequency spectrum, Poincaré maps, bifurcation diagrams, and Lyapunov exponents (LE), are used to characterizing the response. The DC section between two stabilizers is essentially modeled as a Jeffcott rotor with nonlinearity effects included. The model builds on two earlier models for the finite element formulation and the treatment of chaotic vibrations. Nonlinearity appears in the form of drillstring/borehole contact force, friction, and quadratic damping. The DC flexibility is included to allow investigation of bending modes. The analysis takes into account the length of time to steady state, number of subintervals, presence of rigid body modes, number of finite elements, and modal coordinates. Simulations results indicate that by varying operating conditions, a spectrum of behaviors from periodic to chaotic may be observed.

References

References
1.
Bourgoyne
, Jr.,
A. T.
,
Millheim
,
K. K.
,
Chenevert
,
M. E.
, and
Young
, Jr.,
F. S.
,
2005
,
Applied Drilling Engineering
,
Society of Petroleum Engineers
, Richardson,
TX
.
2.
Spanos
,
P. D.
,
2010
,
A Primer for Deterministic and Stochastic Drill-String Vibration Analyses
,
Springer
,
New York
.
3.
Lin
,
Y.-Q.
, and
Wang
,
Y.-H.
,
1991
, “
Stick-Slip Vibration of Drill String
,”
ASME J. Manuf. Sci. Eng.
,
113
(
1
), pp.
38
43
.10.1115/1.2899620
4.
Liao
,
C.-M.
,
Balachandran
,
B.
,
Karkoub
,
M.
, and
Abdel-Magid
,
Y.
,
2011
, “
Drill-String Dynamics: Reduced-Order Models and Experimental Studies
,”
ASME J. Vib. Acoust.
,
133
(4), p.
41008
.10.1115/1.4003406
5.
Melakhessou
,
H.
,
Berlioz
,
A.
, and
Ferraris
,
G.
,
2003
, “
A Nonlinear Well-Drillstring Interaction Model
,”
ASME J. Vib. Acoust.
,
125
(
1
), pp.
46
52
.10.1115/1.1523071
6.
Liao
,
C.-M.
,
Vlajic
,
N.
,
Karki
,
H.
, and
Balachandran
,
B.
,
2012
, “
Parametric Studies on Drill-String Motions
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
260
268
.10.1016/j.ijmecsci.2011.11.005
7.
Liu
,
X.
,
Vlajic
,
N.
,
Long
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2013
, “
Nonlinear Oscillations of a Flexible Rotor With a Drill Bit: Stick-Slip and Delay Effects
,”
Nonlinear Dyn.
,
72
(
1
), pp.
61
77
.10.1007/s11071-012-0690-x
8.
Brett
,
J. F.
,
1992
, “
The Genesis of Torsional Drillstring Vibrations
,”
SPE Drill. Eng.
,
7
(
3
), pp.
168
174
.10.2118/21943-PA
9.
Cull
,
S. J.
, and
Tucker
,
R. W.
,
1999
, “
On the Modelling of Coulomb Friction
,”
J. Phys. A
,
32
(
11
), pp.
2103
2113
.10.1088/0305-4470/32/11/006
10.
Navarro-López
,
E. M.
, and
Cortés
,
D.
,
2007
, “
Avoiding Harmful Oscillations in a Drillstring Through Dynamical Analysis
,”
J. Sound Vib.
,
307
(
1–2
), pp.
152
171
.10.1016/j.jsv.2007.06.037
11.
Jansen
,
J. D.
,
1991
, “
Non-Linear Rotor Dynamics as Applied to Oil-Well Drillstring Vibrations
,”
J. Sound Vib.
,
147
(
1
), pp.
115
135
.10.1016/0022-460X(91)90687-F
12.
Leine
,
R. I.
,
Van Campen
,
D. H.
, and
Keultjes
,
W. J. G.
,
2002
, “
Stick-Slip Whirl Interaction in Drillstring Dynamics
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
209
220
.10.1115/1.1452745
13.
Kotsonis
,
S. J.
, and
Spanos
,
P. D.
,
1997
, “
Chaotic and Random Whirling Motion of Drillstring
,”
ASME J. Energy Res. Technol.
,
119
(
4
), pp.
217
222
.10.1115/1.2794993
14.
Yigit
,
A. S.
, and
Christoforou
,
A. P.
,
2000
, “
Coupled Torsional and Bending Vibrations of Actively Controlled Drillstrings
,”
J. Sound Vib.
,
234
(
1
), pp.
67
83
.10.1006/jsvi.1999.2854
15.
Yigit
,
A. S.
, and
Christoforou
,
A. P.
,
1996
, “
Coupled Axial and Transverse Vibrations of Oilwell Drillstrings
,”
J. Sound Vib.
,
195
(
4
), pp.
617
627
.10.1006/jsvi.1996.0450
16.
Richard
,
T.
,
Germay
,
C.
, and
Detournay
,
E.
,
2004
, “
Self-Excited Stick-Slip Oscillations of Drill Bits
,”
C. R. Mec.
,
332
(
8
), pp.
619
626
.10.1016/j.crme.2004.01.016
17.
Zamanian
,
M.
,
Khadem
,
S. E.
, and
Ghazavi
,
M. R.
,
2007
, “
Stick-Slip Oscillations of Drag Bits by Considering Damping of Drilling Mud and Active Damping System
,”
J. Pet. Sci. Eng.
,
59
(
3–4
), pp.
289
299
.10.1016/j.petrol.2007.04.008
18.
Yigit
,
A. S.
, and
Christoforou
,
A. P.
,
2006
, “
Stick-Slip and Bit-Bounce Interaction in Oil-Well Drillstrings
,”
ASME J. Energy Res. Technol.
,
128
(
4
), pp.
268
274
.10.1115/1.2358141
19.
Spanos
,
P. D.
,
Sengupta
,
A. K.
,
Cunningham
,
R. A.
, and
Paslay
,
P. R.
,
1995
, “
Modeling of Roller Cone Bit Lift-Off Dynamics in Rotary Drilling
,”
ASME J. Energy Res. Technol.
,
117
(
3
), pp.
197
207
.10.1115/1.2835341
20.
Spanos
,
P. D.
,
Payne
,
M. L.
, and
Secora
,
C. K.
,
1997
, “
Bottom-Hole Assembly Modeling and Dynamics Response Determination
,”
ASME J. Energy Res. Technol.
,
119
(
3
), pp.
153
158
.10.1115/1.2794983
21.
Christoforou
,
A. P.
, and
Yigit
,
A. S.
,
2003
, “
Fully Coupled Vibrations of Actively Controlled Drillstrings
,”
J. Sound Vib.
,
267
(
5
), pp.
1029
1045
.10.1016/S0022-460X(03)00359-6
22.
Jogi
,
P. N.
,
MacPherson
,
J. D.
, and
Neubert
,
M.
,
2002
, “
Field Verification of Model-Derived Natural Frequencies of a Drill String
,”
ASME J. Energy Res. Technol.
,
124
(
3
), pp.
154
162
.10.1115/1.1486018
23.
Khulief
,
Y. A.
,
Al-Sulaiman
,
F. A.
, and
Bashmal
,
S.
,
2007
, “
Vibration Analysis of Drillstrings With Self-Excited Stick-Slip Oscillations
,”
J. Sound Vib.
,
299
(
3
), pp.
540
558
.10.1016/j.jsv.2006.06.065
24.
Silveira
,
M.
,
Wang
,
C.
, and
Wiercigroch
,
M.
,
2013
, “
Analysis of Stick-Slip Oscillations of Drill-String Via Cosserat Rod Model
,”
IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design
, Aberdeen, UK, July 27–30, Vol.
32
, pp.
337
345
.10.1007/978-94-007-5742-4_26
25.
Van der Heijden
,
G. H. M.
,
1992
, “
Bifurcation and Chaos in Drillstring Dynamics
,”
Chaos Solitons Fractals
,
3
(
2
), pp.
219
247
.10.1016/0960-0779(93)90068-C
26.
Thomson
,
W. T.
, and
Dahleh
,
M. D.
,
1998
,
Theory of Vibration With Applications
,
Prentice-Hall
,
Upper Saddle River, NJ
.
27.
Vlajic
,
N.
,
Liu
,
X.
,
Karki
,
H.
, and
Balachandran
,
B.
,
2014
, “
Torsional Oscillations of a Rotor With Continuous Stator Contact
,”
Int. J. Mech. Sci.
,
83
, pp.
65
75
.10.1016/j.ijmecsci.2014.03.025
28.
Reddy
,
J. N.
,
2006
,
An Introduction to the Finite Element Method
,
McGraw-Hill Higher Education
,
New York
.
29.
Moon
,
F. C.
,
2004
,
Chaotic Vibrations: An Introduction for Applied Scientists and Engineers
,
John Wiley & Sons, Inc.
, New York.
30.
Blevins
,
R. D.
,
1979
,
Formulas for Natural Frequency and Mode Shape
,
Van Nostrand Reinhold Company, Inc.
,
New York
.
You do not currently have access to this content.