An open parabolic cylindrical shell panel plays a key role in radial signal collection, reflection, and/or transmission applied to radar antennas, space reflectors, solar collectors, etc. Active vibration control can suppress unexpected fluctuation and maintain its precision surface and operations. This study aims to investigate the distributed active actuation behavior of adaptive open parabolic cylindrical shell panels using piezoelectric actuator patches. Dynamic equations of parabolic cylindrical shells laminated with piezoelectric actuator patches are presented first. Then, the actuator induced modal control force is defined based on a newly derived mode shape function. As the actuator area varies due to the curvature change, the normalized actuation effectiveness (i.e., modal control force per unit actuator area) is further evaluated. When the actuator area shrinks to infinitesimal, the expression of microscopic local modal control force is obtained to predict the spatial microscopic actuation behavior on parabolic cylindrical shells. The total control force and its three components exhibit distinct characteristics with respect to shell geometries, modes, and actuator properties. Analyzes suggest that the control force contributed by the membrane force component dominates the total actuation effect. The bending-contributed component increases with the corresponding mode number, while the membrane-contributed component decreases. Actuation effectiveness of two shell geometries, from shallow to deep, and actuator sizes are evaluated. Analysis of optimal actuator locations reveals that actuators placed at the maximal shell curvature are more effective and maximize the control effects.

References

References
1.
Kildal
,
P. S.
,
1984
, “
Radiation Characteristics of the EISCAT VHF Parabolic Cylindrical Reflector Antenna
,”
IEEE Trans. Antennas Propag.
,
32
(
6
), pp.
541
552
.10.1109/TAP.1984.1143371
2.
Sadowy
,
G.
,
Berkun
,
A.
,
Durden
,
S.
,
Huang
,
J.
,
Im
,
E.
,
Lopez
,
B.
,
Lou
,
M.
,
Rahmat-Samii
,
Y.
,
Liu
,
F. Y.
, and
Rengarajan
,
S.
,
2001
, “
Technologies for the Next Generation of Spaceborne Precipitation Radars
,”
IEEE Proceedings Aerospace Conference 2001
, Big Sky, MT, Mar. 10–17, Vol. 4, pp.
1811
1823
.10.1109/AERO.2001.931497
3.
Dragovan
,
M.
,
2000
, “
The DART System for Far-IR/Submillimeter Space Telescopes
,”
Proc. SPIE
,
4849
, pp. 1–7.10.1117/12.460068
4.
Price
,
H.
,
Lupfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
109
125
.10.1115/1.1467922
5.
Fernandez-Garcia
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and
Perez
,
M.
,
2010
, “
Parabolic-Trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1695
1721
.10.1016/j.rser.2010.03.012
6.
Tzou
,
H. S.
, and
Anderson
,
G. L.
,
1992
,
Intelligent Structural System
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
7.
Tzou
,
H. S.
,
1993
,
Piezoelectric Shells: Distributed Sensing and Control of Continua
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
8.
Qiu
,
J.
, and
Tani
,
J.
,
1995
, “
Vibration Control of a Cylindrical Shell Using Distributed Piezoelectric Sensors and Actuators
,”
J. Intell. Mater. Syst. Struct.
,
6
(
4
), pp.
474
481
.10.1177/1045389X9500600404
9.
Tzou
,
H. S.
,
Bao
,
Y.
, and
Venkayya
,
V. B.
,
1996
, “
Parametric Study of Segmented Transducers Laminated on Cylindrical Shells: 2. Actuator Patches
,”
J. Sound Vib.
,
197
(
2
), pp.
225
249
.10.1006/jsvi.1996.0527
10.
Washington
,
G.
,
1996
, “
Smart Aperture Antennas
,”
Smart Mater. Struct.
,
5
(
6
), pp.
801
805
.10.1088/0964-1726/5/6/010
11.
Zhou
,
Y. H.
, and
Tzou
,
H.
,
2000
, “
Active Control of Nonlinear Piezoelectric Circular Shallow Spherical Shells
,”
Int. J. Solids Struct.
,
37
(
12
), pp.
1663
1677
.10.1016/S0020-7683(98)00309-6
12.
Smithmaitrie
,
P.
, and
Tzou
,
H. S.
,
2004
, “
Micro-Control Actions of Actuator Patches Laminated on Hemispherical Shells
,”
J. Sound Vib.
,
277
(
4–5
), pp.
691
710
.10.1016/j.jsv.2003.09.016
13.
Tzou
,
H. S.
,
Wang
,
D. W.
, and
Chai
,
W. K.
,
2002
, “
Dynamics and Distributed Control of Conical Shells Laminated With Full and Diagonal Actuators
,”
J. Sound Vib.
,
256
(
1
), pp.
65
79
.10.1006/jsvi.2001.4199
14.
Li
,
H.
,
Chen
,
Z. B.
, and
Tzou
,
H. S.
,
2010
, “
Distributed Actuation Characteristics of Clamped-Free Conical Shells Using Diagonal Piezoelectric Actuators
,”
Smart Mater. Struct.
,
19
(
11
), p.
115015
.10.1088/0964-1726/19/11/115015
15.
Tzou
,
H. S.
,
Ding
,
J. H.
, and
Hagiwara
,
I.
,
2002
, “
Micro-Control Actions of Segmented Actuator Patches Laminated on Deep Paraboloidal Shells
,”
JSME Int. J., Ser. C
,
45
(
1
), pp.
8
15
.10.1299/jsmec.45.8
16.
Tzou
,
H. S.
, and
Ding
,
J. H.
,
2004
, “
Optimal Control of Precision Paraboloidal Shell Structronic Systems
,”
J. Sound Vib.
,
276
(
1–2
), pp.
273
291
.10.1016/j.jsv.2003.07.027
17.
Yue
,
H. H.
,
Deng
,
Z. Q.
, and
Tzou
,
H. S.
,
2008
, “
Optimal Actuator Locations and Precision Micro-Control Actions on Free Paraboloidal Membrane Shells
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
10
), pp.
2298
2307
.10.1016/j.cnsns.2007.03.018
18.
Tzou
,
H. S.
,
Chai
,
W. K.
, and
Wang
,
D. W.
,
2004
, “
Micro-Control Actions and Location Sensitivity of Actuator Patches Laminated on Toroidal Shells Toroidal Shell
,”
ASME J. Vib. Acoust.
,
126
(
2
), pp.
284
297
.10.1115/1.1687398
19.
Gupta
,
V. K.
,
Seshu
,
P.
,
Issac
,
K. K.
, and
Shevgaonkar
,
R. K.
,
2005
, “
Beam Steering and Shaping of Smart Cylindrical Antenna
,”
AIAA J.
,
43
(
1
), pp.
165
173
.10.2514/1.8689
20.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2013
, “
Distributed Neural Signals on Parabolic Cylindrical Shells
,”
J. Sound Vib.
,
332
(
12
), pp.
2984
3001
.10.1016/j.jsv.2012.12.036
21.
Soedel
,
W.
,
2004
,
Vibrations of Shells and Plates
,
Marcel Dekker Inc.
,
New York
.
You do not currently have access to this content.