This study addresses the nondimensional analysis of drop-induced shock mitigated using magnetorheological energy absorbers (MREAs) incorporating a time lag. This time lag arises from two sources: (1) the time required to generate magnetic field in the electromagnet once current has been applied and (2) the time required for the particles in the magnetorheological fluid to form chains. To this end, the governing equations of motion for a single degree-of-freedom (SDOF) system using an MREA with a time lag were derived. Based on these equations, nondimensional stroke, velocity, and acceleration of the payload were derived, where the MREA with a time lag was used to control payload deceleration after the impact. It is established that there exists an optimal Bingham number that allows the payload mass to achieve a soft landing, that is, the payload comes to rest after utilizing the available stroke of the MREA. Finally, the shock mitigation performance when using this optimal Bingham number control strategy is analyzed, and the effects of time lag are quantified.

References

References
1.
Choi
,
Y.-T.
, and
Wereley
,
N. M.
,
2005
, “
Biodynamic Response Mitigation to Shock Loads Using Magnetorheological Helicopter Crew Seat Suspension
,”
AIAA J. Airc.
,
42
(
5
), pp.
1244
1251
.10.2514/1.7919
2.
Choi
,
Y.-T.
, and
Wereley
,
N. M.
,
2005
, “
Mitigation of Biodynamic Response to Vibratory and Blast-Induced Shock Loads Using Magnetorheological Seat Suspension
,”
Proc. Inst. Mech. Eng., Part D
,
219
(
6
), pp.
741
753
.10.1243/095440705X28330
3.
Hiemenz
,
G. J.
,
Choi
,
Y.-T.
, and
Wereley
,
N. M.
,
2007
, “
Semi-Active Control of Vertical Stroking Helicopter Crew Seat for Enhanced Crashworthiness
,”
AIAA J. Aircr.
,
44
(
3
), pp.
1031
1034
.10.2514/1.26492
4.
Woo
,
D.
,
Choi
,
S. B.
,
Hong
,
S.-R.
,
Choi
,
Y.-T.
, and
Wereley
,
N. M.
,
2007
, “
Frontal Crash Mitigation Using MR Impact Damper for Controllable Bumper
,”
J. Intell. Mater. Syst. Struct.
,
18
(
12
), pp.
1211
1215
.10.1177/1045389X07083134
5.
Facey
,
W. B.
,
Rosenfeld
,
N. C.
,
Choi
,
Y.-T.
,
Wereley
,
N. M.
,
Choi
,
S. B.
, and
Chen
,
P. C.
,
2005
, “
Design and Testing of a Compact Magnetorheological Damper for High Impulsive Loads
,”
Int. J. Mod. Phys. B
,
19
(
7–9
), pp.
1549
1555
.10.1142/S0217979205030578
6.
Mao
,
M.
,
Hu
,
W.
,
Choi
,
Y.-T.
, and
Wereley
,
N. M.
,
2007
, “
A Magnetorheological Damper With Bifold Valves for Shock and Vibration Mitigation
,”
J. Intell. Mater. Syst. Struct.
,
18
(
12
), pp.
1227
1232
.10.1177/1045389X07083131
7.
Bois
,
P. D.
,
Chou
,
C. C.
,
Fileta
,
B. B.
,
Khalil
,
T. B.
,
King
,
A. I.
,
Mahmood
,
H. F.
,
Mertz
,
H. J.
, and
Wismans
,
J.
,
2004
,
Vehicle Crashworthiness and Occupant Protection
,
American Iron and Steel Institute
,
Southfield, MI
.
8.
El Wahed
,
A. K.
,
Sproston
,
J. L.
, and
Schleyer
,
G. K.
,
1999
, “
A Comparison Between Electrorheological and Magnetorheological Fluids Subjected to Impulsive Loads
,”
J. Intell. Mater. Syst. Struct.
,
10
(
9
), pp.
695
700
.10.1106/CBF8-BW28-UU5L-F4MV
9.
Ahmadian
,
M.
, and
Norris
,
J. A.
,
2008
, “
Experimental Analysis of Magnetorheological Dampers When Subjected to Impact and Shock Loading
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
9
), pp.
1978
1985
.10.1016/j.cnsns.2007.03.028
10.
Browne
,
A. L.
,
McCleary
,
J. D.
,
Namuduri
,
C. S.
, and
Webb
,
S. R.
,
2009
, “
Impact Performance of Magnetorheological Fluids
,”
J. Intell. Mater. Syst. Struct.
,
20
(
6
), pp.
723
728
.10.1177/1045389X08096358
11.
Mao
,
M.
,
Hu
,
W.
,
Choi
,
Y.-T.
, and
Wereley
,
N. M.
,
2014
, “
Experimental Validation of a Magnetorheological Energy Absorber Design Analysis
,”
J. Intell. Mater. Syst. Struct.
,
25
(
3
), pp.
352
363
.10.1177/1045389X13494934
12.
Wereley
,
N. M.
,
Choi
,
Y.-T.
, and
Singh
,
H. J.
,
2011
, “
Adaptive Energy Absorbers for Drop-Induced Shock Mitigation
,”
J. Intell. Mater. Syst. Struct.
,
22
(
4
), pp.
515
519
.10.1177/1045389X10393767
13.
Singh
,
H. J.
, and
Wereley
,
N. M.
,
2013
, “
Adaptive Magnetorheological Shock Isolation Mounts for Drop-Induced Impacts
,”
Smart Mater. Struct.
,
22
(
12
), p.
122001
.10.1088/0964-1726/22/12/122001
14.
Corless
,
R. M.
,
Gonnet
,
G. H.
,
Hare
,
D. E. G.
,
Jeffrey
,
D. J.
, and
Knuth
,
D. E.
,
1996
, “
On the Lambert W Function
,”
Adv. Comput. Math.
,
5
(
1
), pp.
329
359
.10.1007/BF02124750
15.
Brito
,
P. B.
,
Fabiao
,
F.
, and
Staubyn
,
A.
,
2008
, “
Euler, Lambert, and the Lambert W-Function Today
,”
Math. Sci.
,
33
(
2
), pp.
127
133
.
16.
Barry
,
D. A.
,
Li
,
L.
, and
Jeng
,
D.-S.
,
2004
, “
Comments on Numerical Evaluation of the Lambert W Function and Application to Generation of Generalized Gaussian Noise With Exponent ½
,”
IEEE Trans. Signal Process.
,
52
(
5
), pp.
1456
1458
.10.1109/TSP.2004.826154
17.
Jafri
,
S. M. M.
,
2004
, “
Modeling of Impact Dynamics of a Tennis Ball With a Flat Surface
,” M.Sc. thesis, Texas A&M University, College Station, TX.
You do not currently have access to this content.