Dielectric elastomers (DE) are incompressible rubberlike solids whose electrical and structural responses are highly nonlinear and strongly coupled. Thanks to their coupled electromechanical response, intrinsic lightness, easy manufacturability, and low-cost, DEs are perfectly suited for the development of novel solid-state polymeric energy conversion units with capacitive nature and high-voltage operation, which are more resilient, lightweight, integrated, economic, and disposable than traditional generators based on conventional electromagnetic technology. Inflated circular diaphragm dielectric elastomer generators (ICD-DEG) are a special embodiment of polymeric transducer that can be used to convert pneumatic energy into usable electricity. Potential application of ICD-DEG is as power take-off system for wave energy converters (WEC) based on the oscillating water column (OWC) principle. This paper presents a reduced, yet accurate, dynamic model for ICD-DEG that features one kinematic degree of freedom and which accounts for DE visco-elasticity. The model is computationally simple and can be easily integrated into existing wave-to-wire models of OWCs to be used for fast analysis and real-time applications. For demonstration purposes, integration of the considered ICD-DEG model with a lumped-parameter hydrodynamic model of a realistic OWC is also presented along with a simulation case study.

References

References
1.
Carpi
,
F.
,
De Rossi
,
D.
,
Kornbluh
,
R.
,
Pelrine
,
R.
, and
Sommer-Larsen
,
P.
,
2008
,
Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models, and Applications of an Emerging Electroactive Polymer Technology
,
Elsevier
, Amsterdam, The Netherlands.
2.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Eckerle
,
J.
,
Jeuck
,
P.
,
Oh
,
S.
,
Pei
,
Q.
, and
Stanford
,
S.
,
2001
, “
Dielectric Elastomers: Generator Mode Fundamentals and Applications
,”
Proc. SPIE
,
4329
, pp.
148
156
.10.1117/12.432640
3.
Koh
,
S. J. A.
,
Keplinger
,
C.
,
Li
,
T.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2011
, “
Dielectric Elastomer Generators: How Much Energy Can be Converted?
,”
IEEE/ASME Trans. Mechatronics
,
16
(
1
), pp.
33
41
.10.1109/TMECH.2010.2089635
4.
McKay
,
T.
,
O'Brien
,
B.
,
Calius
,
E.
, and
Anderson
,
I.
,
2010
, “
Self-Priming Dielectric Elastomer Generators
,”
Smart Mater. Struct.
,
19
(
5
), p.
055025
.10.1088/0964-1726/19/5/055025
5.
Jean-Mistral
,
C.
,
Basrour
,
S.
, and
Chaillout
,
J.-J.
,
2010
, “
Modelling of Dielectric Polymers for Energy Scavenging Applications
,”
Smart Mater. Struct.
,
19
(
10
), p.
105006
.10.1088/0964-1726/19/10/105006
6.
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2012
, “
Energy Harvesting of Dielectric Elastomer Generators Concerning Inhomogeneous Fields and Viscoelastic Deformation
,”
J. Appl. Phys.
,
112
(
3
), p.
034119
.10.1063/1.4745049
7.
Chiba
,
S.
,
Waki
,
M.
,
Kornbluh
,
R.
, and
Pelrine
,
R.
,
2008
, “
Innovative Power Generators for Energy Harvesting Using Electroactive Polymer Artificial Muscles
,”
Proc. SPIE
,
6927
, p.
692715
.10.1117/12.778345
8.
Jean
,
P.
,
Wattez
,
A.
,
Ardoise
,
G.
,
Melis
,
C.
,
Van Kessel
,
R.
,
Fourmon
,
A.
,
Barrabino
,
E.
,
Heemskerk
,
J.
, and
Queau
,
J. P.
,
2012
, “
Standing Wave Tube Electro Active Polymer Wave Energy Converter
,”
Proc. SPIE
,
8340
, p.
83400C
.10.1117/12.934222
9.
Vertechy
,
R.
,
Fontana
,
M.
,
Rosati-Papini
,
G. P.
, and
Bergamasco
,
M.
,
2013
, “
Oscillating-Water-Column Wave-Energy-Converter Based on Dielectric Elastomer Generator
,”
Proc. SPIE
,
8687
, p.
86870I
.10.1117/12.2012016
10.
Scherber
,
B.
,
Grauer
,
M.
, and
Köllnberger
,
A.
,
2013
, “
Electroactive Polymers for Gaining Sea Power
,”
Proc. SPIE
,
8687
, p.
86870K
.10.1117/12.2009113
11.
Moretti
,
G.
,
Forehand
,
D.
,
Vertechy
,
R.
,
Fontana
,
M.
, and
Ingram
,
D.
,
2014
, “
Modeling of a Surging Wave Energy Converter With Dielectric Elastomer Power Take-Off
,”
ASME
Paper No. OMAE2014-23559.10.1115/OMAE2014-23559
12.
Rosati Papini
,
G. P.
,
Vertechy
,
R.
, and
Fontana
,
M.
,
2013
, “
Dynamic Model of Dielectric Elastomer Diaphragm Generators for Oscillating Water Column Wave Energy Converters
,”
ASME
Paper No. SMASIS2013-3255.10.1115/SMASIS2013-3255
13.
Govindjee
,
S.
, and
Reese
,
S.
,
1997
, “
A Presentation and Comparison of Two Large Deformation Viscoelasticity Models
,”
ASME J. Eng. Mater. Technol.
,
119
(
3
), pp.
251
255
.10.1115/1.2812252
14.
Foo
,
C.
,
Cai
,
S.
,
Koh
,
A.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2012
, “
Model of Dissipative Dielectric Elastomers
,”
J. Appl. Phys.
,
111
(
3
), p.
034102
.10.1063/1.3680878
15.
Goulbourne
,
N. C.
,
Mockensturm
,
E.
, and
Frecker
,
M.
,
2007
, “
Electro-Elastomers: Large Deformation Analysis of Silicone Membranes
,”
Int. J. Solids Struct.
,
44
(
9
), pp.
2609
2626
.10.1016/j.ijsolstr.2006.08.015
16.
He
,
T.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Equilibrium and Stability of Dielectric Elastomer Membranes Undergoing Inhomogeneous Deformation
,”
J. Appl. Phys.
,
106
(8), p.
083522
.10.1063/1.3253322
17.
Adkins
,
J. E.
, and
Rivlin
,
R. S.
,
1952
, “
Large Elastic Deformations of Isotropic Materials: IX. The Deformation of Thin Shells
,”
Philos. Trans. R. Soc. London, Ser. A
,
244
(
888
), pp.
505
531
.10.1098/rsta.1952.0013
18.
Vertechy
,
R.
,
Berselli
,
G.
,
Parenti Castelli
,
V.
, and
Bergamasco
,
M.
,
2013
, “
Continuum Thermo-Electro-Mechanical Model for Electrostrictive Elastomers
,”
J. Intell. Mater. Syst. Struct.
,
24
(
6
), pp.
761
778
.10.1177/1045389X12455855
19.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.10.5254/1.3538357
20.
Zhu
,
J.
,
Cai
,
S.
, and
Suo
,
Z.
,
2010
, “
Resonant Behavior of a Membrane of a Dielectric Elastomer
,”
Int. J. Solids Struct.
,
47
(
24
), pp.
3254
3262
.10.1016/j.ijsolstr.2010.08.008
21.
Falcão
,
A. F. O.
,
2000
, “
The Shoreline OWC Wave Power Plant at the Azores
,”
Fourth European Wave Energy Conference
, Aalborg, Denmark, Dec. 4–6.
22.
Falcão
,
A. F. O.
, and
Rodrigues
,
R. J. A.
,
2002
, “
Stochastic Modelling of OWC Wave Power Plant Performance
,”
Appl. Ocean Res.
,
24
(
2
), pp.
59
71
.10.1016/S0141-1187(02)00022-6
You do not currently have access to this content.