The accurate and reliable identification of damage in modern engineered structures is essential for timely corrective measures. Vibration-based damage prediction has been studied extensively by virtue of its global damage detection ability and simplicity in practical implementation. However, due to noise and damping influences, the accuracy of this method is inhibited when direct peak detection (DPD) is utilized to determine resonant frequency shifts. This research investigates an alternative method to detect frequency shifts caused by structural damage based on the utilization of strongly nonlinear bifurcation phenomena in bistable electrical circuits coupled with piezoelectric transducers integrated with the structure. It is shown that frequency shift predictions by the proposed approach are significantly less susceptible to error than DPD when realistic noise and damping levels distort the shifting resonance peaks. As implemented alongside adaptive piezoelectric circuitry with tunable inductance, the new method yields damage location and severity identification that is significantly more robust and accurate than results obtained following the DPD approach.

References

1.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
,
2007
, “
Review of Guided-Wave Structural Health Monitoring
,”
Shock Vib. Dig.
,
39
(
2
), pp.
91
116
.10.1177/0583102406075428
2.
Huguet
,
S.
,
Godin
,
N.
,
Gaertner
,
R.
,
Salmon
,
L.
, and
Villard
,
D.
,
2002
, “
Use of Acoustic Emission to Identify Damage Modes in Glass Fibre Reinforced Polyester
,”
Compos. Sci. Technol.
,
62
(
10–11
), pp.
1433
1444
.10.1016/S0266-3538(02)00087-8
3.
Carden
,
E. P.
, and
Fanning
,
P.
,
2004
, “
Vibration Based Condition Monitoring: A Review
,”
Struct. Health Monit.
,
3
(
4
), pp.
355
377
.10.1177/1475921704047500
4.
Figueiredo
,
E.
,
Park
,
G.
,
Farinholt
,
K. M.
,
Farrar
,
C. R.
, and
Lee
,
J. R.
,
2012
, “
Use of Time-Series Predictive Models for Piezoelectric Active-Sensing in Structural Health Monitoring Applications
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041014
.10.1115/1.4006410
5.
Salawu
,
O. S.
,
1997
, “
Detection of Structural Damage Through Changes in Frequency: A Review. Engineering Structures
,”
Eng. Struct.
,
19
(
9
), pp.
718
723
.10.1016/S0141-0296(96)00149-6
6.
Majumdar
,
A.
,
Maiti
,
D. K.
, and
Maity
,
D.
,
2012
, “
Damage Assessment of Truss Structures From Changes in Natural Frequencies Using Ant Colony Optimization
,”
Appl. Math. Comput.
,
218
(
19
), pp.
9759
9772
.10.1016/j.amc.2012.03.031
7.
Qiao
,
P.
, and
Cao
,
M.
,
2008
, “
Waveform Fractal Dimension for Mode Shape-Based Damage Identification of Beam-Type Structures
,”
Int. J. Solids Struct.
,
45
(
22
), pp.
5946
5961
.10.1016/j.ijsolstr.2008.07.006
8.
Lestari
,
W.
,
Qiao
,
P.
, and
Hanagud
,
S.
,
2007
, “
Curvature Mode Shape-Based Damage Assessment of Carbon/Epoxy Composite Beams
,”
J. Intell. Mater. Syst. Struct.
,
18
(
3
), pp.
189
208
.10.1177/1045389X06064355
9.
Friswell
,
M. I.
, and
Penny
,
J. E. T.
,
1997
, “
Is Damage Location Using Vibration Measurements Practical?
,”
EUROMECH 365 International Workshop: DAMAS 97
,
Sheffield
,
UK
, July 30–Aug. 2, pp.
351
362
.
10.
Trivailo
,
P.
,
Plotnikova
,
L. A.
, and
Wood
,
L. A.
,
1997
, “
Enhanced Parameter Identification for Damage Detection and Structural Integrity Assessment Using Twin Structures
,”
5th International Congress on Sound and Vibration (ICSV5)
,
Adelaide
,
Australia
, Dec. 15–18, Paper No. 270, Vol.
IV
, pp.
1733
1741
.
11.
Cha
,
P. D.
, and
Gu
,
W.
,
2000
, “
Model Updating Using an Incomplete Set of Experimental Modes
,”
J. Sound Vib.
,
233
(
4
), pp.
583
596
.10.1006/jsvi.1999.2840
12.
Jiang
,
L. J.
,
Tang
,
J.
, and
Wang
,
K. W.
,
2006
, “
An Enhanced Frequency-Shift-Based Damage Identification Method Using Tunable Piezoelectric Transducer Circuitry
,”
Smart Mater. Struct.
,
15
(
3
), pp.
799
808
.10.1088/0964-1726/15/3/016
13.
Jiang
,
L. J.
,
Tang
,
J.
, and
Wang
,
K. W.
,
2008
, “
On the Tuning of Variable Piezoelectric Transducer Circuitry Network for Structural Damage Identification
,”
J. Sound Vib.
,
309
(
3
), pp.
695
717
.10.1016/j.jsv.2007.07.045
14.
Wang
,
K. W.
, and
Tang
,
J.
,
2008
,
Adaptive Structural Systems With Piezoelectric Transducer Circuitry
,
Springer
,
New York
.
15.
Farrar
,
C. R.
,
Baker
,
W. E.
,
Bell
,
T. M.
,
Cone
,
K. M.
,
Darling
,
T. W.
,
Duffey
,
T. A.
, and
Migliori
,
A.
,
1994
, “
Dynamic Characterization and Damage Detection in the I-40 Bridge Over the Rio Grande
,” Los Alamos National Lab, Los Alamos, NM, Technical Report No. LA-12767-MS.
16.
Chen
,
H. L.
,
Spyrakos
,
C. C.
, and
Venkatesh
,
G.
,
1995
, “
Evaluating Structural Deterioration by Dynamic Response
,”
J. Struct. Eng.
,
121
(
8
), pp.
1197
1204
.10.1061/(ASCE)0733-9445(1995)121:8(1197)
17.
Koh
,
B. H.
, and
Dyke
,
S. J.
,
2007
, “
Structural Health Monitoring for Flexible Bridge Structures Using Correlation and Sensitivity of Modal Data
,”
Comput. Struct.
,
85
(
3
), pp.
117
130
.10.1016/j.compstruc.2006.09.005
18.
Jiang
,
L. J.
,
Tang
,
J.
, and
Wang
,
K. W.
,
2007
, “
An Optimal Sensitivity-Enhancing Feedback Control Approach Via Eigenstructure Assignment for Structural Damage Identification
,”
ASME J. Vib. Acoust.
,
129
(
6
), pp.
771
783
.10.1115/1.2748476
19.
Jiang
,
L. J.
, and
Wang
,
K. W.
,
2009
, “
An Experiment-Based Frequency Sensitivity Enhancing Control Approach for Structural Damage Detection
,”
Smart Mater. Struct.
,
18
(
6
),
p
. 065005.10.1088/0964-1726/18/6/065005
20.
Koh
,
B. H.
, and
Ray
,
L. R.
,
2004
, “
Feedback Controller Design for Sensitivity-Based Damage Localization
,”
J. Sound Vib.
,
273
(
1
), pp.
317
335
.10.1016/S0022-460X(03)00541-8
21.
Tang
,
J.
, and
Wang
,
K. W.
,
2004
, “
Vibration Confinement Via Optimal Eigenvector Assignment and Piezoelectric Networks
,”
ASME J. Vib. Acoust.
,
126
(
1
), pp.
27
36
.10.1115/1.1597213
22.
Vijay
,
R.
,
Devoret
,
M. H.
, and
Siddiqi
, I
.
,
2009
, “
Invited Review Article: The Josephson Bifurcation Amplifier
,”
Rev. Sci. Instrum.
,
80
(
11
), p.
111101
.10.1063/1.3224703
23.
Zhang
,
W.
, and
Turner
,
K. L.
,
2005
, “
Application of Parametric Resonance Amplification in a Single-Crystal Silicon Micro-Oscillator Based Mass Sensor
,”
Sens. Actuators A
,
122
(
1
), pp.
23
30
.10.1016/j.sna.2004.12.033
24.
Younis
,
M. I.
, and
Alsaleem
,
F.
,
2009
, “
Exploration of New Concepts for Mass Detection in Electrostatically-Actuated Structures Based on Nonlinear Phenomena
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021010
.10.1115/1.3079785
25.
Kumar
,
V.
,
Boley
,
J. W.
,
Yang
,
Y.
,
Ekowaluyo
,
H.
,
Miller
,
J. K.
,
Chiu
,
G. T. C.
, and
Rhoads
,
J. F.
,
2011
, “
Bifurcation-Based Mass Sensing Using Piezoelectrically-Actuated Microcantilevers
,”
Appl. Phys. Lett.
,
98
(
15
), p.
153510
.10.1063/1.3574920
26.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
A Bifurcation-Based Coupled Linear-Bistable System for Microscale Mass Sensing
,”
J. Sound Vib.
,
333
(
8
), pp.
2241
2252
.10.1016/j.jsv.2013.12.017
27.
Lifshitz
,
R.
, and
Cross
,
M. C.
,
2008
, “
Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators
,”
Reviews of Nonlinear Dynamics and Complexity
,
H. G.
Schuster
, ed.,
Wiley-VCH
,
Weinheim, Germany
, pp.
1
52
.
28.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
Robust Sensing Methodology for Detecting Change With Bistable Circuitry Dynamics Tailoring
,”
Appl. Phys. Lett.
,
102
(
20
), p.
203506
.10.1063/1.4807772
29.
Paek
,
J.
,
Chintalapudi
,
K.
,
Govindan
,
R.
,
Caffrey
,
J.
, and
Masri
,
S.
,
2005
, “
A Wireless Sensor Network for Structural Health Monitoring: Performance and Experience
,”
Second IEEE Workshop on Embedded Networked Sensors
(
EmNetS-II
), Washington, DC, May 30–31.10.1109/EMNETS.2005.1469093
30.
Lynch
,
J. P.
, and
Loh
,
K.
,
2006
, “
A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring
,”
Shock Vib. Dig.
,
38
(
2
), pp.
91
130
.10.1177/0583102406061499
You do not currently have access to this content.