This paper investigates the complicated dynamics behavior and the evolution law of the nonlinear vibrations of the simply supported laminated composite piezoelectric beam subjected to the axial load and the transverse load. Using the third-order shear deformation theory and the Hamilton's principle, the nonlinear governing equations of motion for the laminated composite piezoelectric beam are derived. Applying the method of multiple scales and Galerkin's approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of principal parametric resonance and 1:9 internal resonance. From the averaged equations obtained, numerical simulation is performed to study nonlinear vibrations of the laminated composite piezoelectric beam. The axial load, the transverse load, and the piezoelectric parameter are selected as the controlling parameters to analyze the law of complicated nonlinear dynamics of the laminated composite piezoelectric beam. Based on the results of numerical simulation, it is found that there exists the complex nonlinear phenomenon in motions of the laminated composite piezoelectric beam. In summary, numerical studies suggest that periodic motions and chaotic motions exist in nonlinear vibrations of the laminated composite piezoelectric beam. In addition, it is observed that the axial load, the transverse load and the piezoelectric parameter have significant influence on the nonlinear dynamical behavior of the beam. We can control the response of the system from chaotic motions to periodic motions by changing these parameters.

References

References
1.
Leng
,
J. S.
,
Asundi
,
A.
, and
Liu
,
Y. J.
,
1999
, “
Vibration Control of Smart Composite Beams With Embedded Optical Fiber Sensor and ER Fluid
,”
ASME J. Vib. Acoust.
,
121
(4), pp.
508
509
.10.1115/1.2894011
2.
Huang
,
D.
, and
Sun
,
B.
,
2001
, “
Approximate Analytical Solutions of Smart Composite Mindlin Beams
,”
J. Sound Vib.
,
244
(
3
), pp.
379
394
.10.1006/jsvi.2000.3475
3.
Halim
,
D.
, and
Moheimani
,
S. O. R.
,
2001
, “
Spatial Resonant Control of Flexible Structures-Application to a Piezoelectric Laminate Beam
,”
IEEE Trans. Control Syst. Technol.
,
9
(
1
), pp.
37
53
.10.1109/87.896744
4.
Waisman
,
H.
, and
Abramovich
,
H.
,
2002
, “
Variation of Natural Frequencies of Beams Using the Active Stiffening Effect
,”
Composites, Part B
,
33
(6), pp.
415
424
.10.1016/S1359-8368(02)00031-8
5.
Kapuria
,
S.
,
Ahmed
,
A.
, and
Dumir
,
P. C.
,
2004
, “
Static and Dynamic Thermo-Electro-Mechanical Analysis of Angle-Ply Hybrid Piezoelectric Beams Using an Efficient Coupled Zigzag Theory
,”
Compos. Sci. Technol.
,
64
(16), pp.
2463
2475
.10.1016/j.compscitech.2004.05.012
6.
Heuer
,
R.
, and
Adam
,
C.
,
2000
, “
Piezoelectric Vibrations of Composite Beams With Interlayer Slip
,”
Acta Mech.
,
140
(3–4), pp.
247
263
.10.1007/BF01182514
7.
Kapuria
,
S.
, and
Alam
,
N.
,
2005
, “
Nonlinear Zigzag Theory for Buckling of Hybrid Piezoelectric Rectangular Beams Under Electrothermomechanical Loads
,”
J. Eng. Mech.
,
131
(4), pp.
367
376
.10.1061/(ASCE)0733-9399(2005)131:4(367)
8.
Kapuria
,
S.
,
Alam
,
N.
, and
Jain
,
N. K.
,
2005
, “
Two-Dimensional Piezoelasticity and Zigzag Theory Solutions for Vibration of Initially Stressed Hybrid Beams
,”
ASME J. Vib. Acoust.
,
127
(
2
), pp.
116
124
.10.1115/1.1857923
9.
Marur
,
S. R.
, and
Kant
,
T.
,
2007
, “
On the Angle Ply Higher-Order Beam Vibrations
,”
Comput. Mech.
,
40
(1), pp.
25
33
.10.1007/s00466-006-0079-0
10.
Jiang
,
J. P.
, and
Li
,
D. X.
,
2007
, “
A New Finite Element Model for Piezothermoelastic Composite Beam
,”
J. Sound Vib.
,
306
(3–5), pp.
849
864
.10.1016/j.jsv.2007.06.023
11.
Emam
,
S. A.
, and
Nayfeh
,
A. H.
,
2009
, “
Postbuckling and Free Vibrations of Composite Beams
,”
Compos. Struct.
,
88
(4), pp.
636
642
.10.1016/j.compstruct.2008.06.006
12.
Fridman
,
Y.
, and
Abramovich
,
H.
,
2008
, “
Enhanced Structural Behavior of Flexible Laminated Composite Beams
,”
Compos. Struct.
,
82
(1), pp.
140
154
.10.1016/j.compstruct.2007.05.007
13.
Mahmoodi
,
S. N.
, and
Jalili
,
N.
,
2008
, “
Coupled Flexural-Torsional Nonlinear Vibrations of Piezoelectrically Actuated Microcantilevers With Application to Friction Force Microscopy
,”
ASME J. Vib. Acoust.
,
130
(6), p.
061003
.10.1115/1.2948379
14.
Kapuria
,
S.
,
Kumari
,
P.
, and
Nath
,
J. K.
,
2010
, “
Efficient Modeling of Smart Piezoelectric Composite Laminates: A Review
,”
Acta Mech.
,
214
(1–2), pp.
31
48
.10.1007/s00707-010-0310-0
15.
Bilgen
,
O.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2010
, “
Analytical and Experimental Characterization of Macro-Fiber Composite Actuated Thin Clamped-Free Unimorph Benders
,”
ASME J. Vib. Acoust.
,
132
(5), p.
051005
.10.1115/1.4001504
16.
Xu
,
Y. P.
, and
Zhou
,
D.
,
2011
, “
Two-Dimensional Analysis of Simply Supported Piezoelectric Beams With Variable Thickness
,”
Appl. Math. Modell.
,
35
(9), pp.
4458
4472
.10.1016/j.apm.2011.03.012
17.
Schoeftner
,
J.
, and
Krommer
,
M.
,
2012
, “
Single Point Vibration Control for a Passive Piezoelectric Bernoulli-Euler Beam Subjected to Spatially Varying Harmonic Loads
,”
Acta Mech.
,
223
(9), pp.
1983
1998
.10.1007/s00707-012-0686-0
18.
Wang
,
J. J.
,
Shi
,
Z. F.
, and
Xiang
,
H. J.
,
2013
, “
Electromechanical Analysis of Piezoelectric Beam-Type Transducers With Interlayer Slip
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
60
(
8
), pp.
1768
1776
.10.1109/TUFFC.2013.2757
19.
Lee
,
U.
,
Kim
,
D.
, and
Park
,
I.
,
2013
, “
Dynamic Modeling and Analysis of the PZT-Bonded Composite Timoshenko Beams: Spectral Element Method
,”
J. Sound Vib.
,
332
(6), pp.
1585
1609
.10.1016/j.jsv.2012.06.020
20.
Hajianmaleki
,
M.
, and
Qatu
,
M. S.
,
2013
, “
Vibrations of Straight and Curved Composite Beams: A Review
,”
Compos. Struct.
,
100
, pp.
218
232
.10.1016/j.compstruct.2013.01.001
21.
Beheshti-Aval
,
S. B.
, and
Lezgy-Nazargah
,
M.
,
2013
, “
Coupled Refined Layerwise Theory for Dynamic Free and Forced Response of Piezoelectric Laminated Composite and Sandwich Beams
,”
Meccanica
,
48
(6), pp.
1479
1500
.10.1007/s11012-012-9679-2
22.
Khani
,
S.
,
Tabandeh
,
N.
, and
Ghomshei
,
M. M.
,
2014
, “
Natural Frequency Analysis of Non-Uniform Smart Beams With Piezoelectric Layers, Using Differential Quadrature Method
,”
Composites, Part B
,
58
, pp.
303
311
.10.1016/j.compositesb.2013.10.022
23.
Mareishi
,
S.
,
Rafiee
,
M.
,
He
,
X. Q.
, and
Liew
,
K. M.
,
2014
, “
Nonlinear Free Vibration, Postbuckling and Nonlinear Static Deflection of Piezoelectric Fiber-Reinforced Laminated Composite Beams
,”
Composites, Part B
,
59
, pp.
123
132
.10.1016/j.compositesb.2013.11.017
24.
Kapuria
,
S.
,
Bhattacharyya
,
M.
, and
Kumar
,
A. N.
,
2006
, “
Assessment of Coupled 1D Models for Hybrid Piezoelectric Layered Functionally Graded Beams
,”
Compos. Struct.
,
72
(4), pp.
455
468
.10.1016/j.compstruct.2005.01.015
25.
Alibeigloo
,
A.
,
2010
, “
Thermoelasticity Analysis of Functionally Graded Beam With Integrated Surface Piezoelectric Layers
,”
Compos. Struct.
,
92
(6), pp.
1535
1543
.10.1016/j.compstruct.2009.10.030
26.
Kiani
,
Y.
,
Rezaei
,
M.
,
Taheri
,
S.
, and
Eslami
,
M. R.
,
2011
, “
Thermo-Electrical Buckling of Piezoelectric Functionally Graded Material Timoshenko Beams
,”
Int. J. Mech. Mater. Des.
,
7
(3), pp.
185
197
.10.1007/s10999-011-9158-2
27.
Panda
,
S.
, and
Ray
,
M. C.
,
2012
, “
Active Damping of Nonlinear Vibrations of Functionally Graded Laminated Composite Plates Using Vertically/Obliquely Reinforced 1-3 Piezoelectric Composite
,”
ASME J. Vib. Acoust.
,
134
(2), p.
021016
.10.1115/1.4004604
28.
Dash
,
P.
, and
Singh
,
B. N.
,
2012
, “
Geometrically Nonlinear Free Vibration of Laminated Composite Plate Embedded With Piezoelectric Layers Having Uncertain Material Properties
,”
ASME J. Vib. Acoust.
,
134
(6), p.
061006
.10.1115/1.4006757
29.
Rafiee
,
M.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2013
, “
Large Amplitude Vibration of Carbon Nanotube Reinforced Functionally Graded Composite Beams With Piezoelectric Layers
,”
Compos. Struct.
,
96
, pp.
716
725
.10.1016/j.compstruct.2012.10.005
30.
Shegokar
,
N. L.
, and
Lal
,
A.
,
2013
, “
Stochastic Nonlinear Bending Response of Piezoelectric Functionally Graded Beam Subjected to Thermoelectromechanical Loadings With Random Material Properties
,”
Compos. Struct.
,
100
, pp.
17
33
.10.1016/j.compstruct.2012.12.032
31.
Komijani
,
M.
,
Reddy
,
J. N.
, and
Eslami
,
M. R.
,
2014
, “
Nonlinear Analysis of Microstructure-Dependent Functionally Graded Piezoelectric Material Actuators
,”
J. Mech. Phys. Solids
,
63
, pp.
214
227
.10.1016/j.jmps.2013.09.008
32.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells
,
1st ed.
,
McGraw-Hill
,
New York
.
33.
Poulin
,
K. C.
, and
Vaicaitis
,
R.
,
2004
, “
Vibrations of Stiffened Composite Panels With Smart Materials
,”
ASME J. Vib. Acoust.
,
126
(3), pp.
370
379
.10.1115/1.1760566
34.
Topdar
,
P.
,
Chakraborti
,
A.
, and
Sheikh
,
A. H.
,
2004
, “
An Efficient Hybrid Plate Model for Analysis and Control of Smart Sandwich Laminates
,”
Comput. Meth. Appl. Mech. Eng.
,
193
(
42–44
), pp.
4591
4610
.10.1016/j.cma.2004.03.008
35.
Kapuria
,
S.
, and
Achary
,
G. G. S.
,
2004
, “
An Efficient Higher Order Zigzag Theory for Laminated Plates Subjected to Thermal Loading
,”
Int. J. Solids Struct.
,
41
(
16–17
), pp.
4661
4684
.10.1016/j.ijsolstr.2004.02.020
36.
Kapuria
,
S.
, and
Achary
,
G. G. S.
,
2005
, “
A Coupled Consistent Third-Order Theory for Hybrid Piezoelectric Plates
,”
Compos. Struct.
,
70
(
1
), pp.
120
133
.10.1016/j.compstruct.2004.08.018
37.
Moita
,
J. M. S.
,
Soares
,
C. M. M.
, and
Soares
,
C. A. M.
,
2005
, “
Active Control of Forced Vibrations in Adaptive Structures Using a Higher-Order Model
,”
Compos. Struct.
,
71
(
3–4
), pp.
349
355
.10.1016/j.compstruct.2005.09.009
38.
Vel
,
S. S.
, and
Baillargeon
,
B. P.
,
2005
, “
Analysis of Static Deformation, Vibration and Active Damping of Cylindrical Composite Shells With Piezoelectric Shear Actuators
,”
ASME J. Vib. Acoust.
,
127
(
4
), pp.
395
407
.10.1115/1.1898337
39.
Zhu
,
L. F.
,
Chattopadhyay
,
A.
, and
Goldberg
,
R. K.
,
2006
, “
Nonlinear Transient Response of Strain Rate Dependent Composite Laminated Plates Using Multiscale Simulation
,”
Int. J. Solids Struct.
,
43
(
9
), pp.
2602
2630
.10.1016/j.ijsolstr.2005.06.033
40.
Varelis
,
D.
, and
Saravanos
,
D. A.
,
2006
, “
Small-Amplitude Free-Vibration Analysis of Piezoelectric Composite Plates Subject to Large Deflections and Initial Stresses
,”
ASME J. Vib. Acoust.
,
128
(1), pp.
41
49
.10.1115/1.2128637
41.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
1st ed.
,
Wiley-Interscience
,
New York
.
You do not currently have access to this content.