Harvesting energy from ambient vibrations in order to power autonomous sensors is a challenging issue. The aim of this work is to compare the power output from an innovative wideband fractal-inspired piezoelectric converter to that from a traditional multicantilever piezoelectric energy converter. In a given frequency range, the converters are tuned on the same eigenfrequencies. The effect of the input acceleration and of the resistive load applied to the converters is investigated experimentally for each of the three eigenfrequencies in the range between 0 and 120 Hz. The fractal-inspired converter exhibits a significantly higher specific output power at the first and third of the eigenfrequencies investigated.
Issue Section:
Research Papers
References
1.
Despesse
, G.
, Jager
, T.
, Chaillout
, J. J.
, Léger
, J. M.
, and Basrour
, S.
, 2005
, “Design and Fabrication of a New System for Vibration Energy Harvesting
,” 2005 PhD Research in Microelectronics and Electronics
, Lausanne, Switzerland, July 25–28, Vol. 1
, pp. 225
–228
.10.1109/RME.2005.15430342.
Beeby
, S. P.
, Tudor
, M. J.
, and White
, N. M.
, 2006
, “Energy Harvesting Vibration Sources for Microsystems Applications
,” Meas. Sci. Technol.
, 17
(12), pp. R175
–R195
.10.1088/0957-0233/17/12/R013.
Shafer
, M. W.
, and Garcia
, E.
, 2013
, “The Power and Efficiency Limits of Piezoelectric Energy Harvesting
,” ASME J. Vib. Acoust.
, 136
(2
), p. 021007
.10.1115/1.40259964.
Glynne-Jones
, F.
, Beeby
, S. P.
, and White
, N. M.
, 2001
, “Towards a Piezoelectric Vibration-Powered Microgenerator
,” IEEE Proceedings of Science, Measurement and Technology
, 148(2), pp. 68
–72
.10.1049/ip-smt:200103235.
Zurn
, S.
, Hsieh
, M.
, Smith
, G.
, Markus
, D.
, Zang
, M.
, Nam
, Y.
, Arik
, M.
, and Polla
, D.
, 2001
, “Fabrication and Structural Characterization of a Resonant Frequency PZT Microcantilever
,” Smart Mater. Struct.
, 10
(2), pp. 252
–263
.10.1088/0964-1726/10/2/3106.
Roundy
, S.
, Wright
, P. K.
, and Rabaey
, J.
, 2003
,“A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,” Comput. Commun.
, 26
(11), pp. 1131
–1144
.10.1016/S0140-3664(02)00248-77.
Erturk
, A.
, 2009
, “An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,” Smart Mater. Struct.
, 18
(2), p. 025009
.10.1088/0964-1726/18/2/0250098.
Shen
, D.
, 2007
, “Analysis of Piezoelectric Materials for Energy Harvesting Devices Under High-g Vibrations
,” Jpn. J. Appl. Phys.
, 46
(10
), pp. 6755
–6760
.10.1143/JJAP.46.67559.
Benasciutti
, D.
, Moro
, L.
, Zelenika
, S.
, and Brusa
, E.
, 2010
, “Vibration Energy Scavenging Via Piezoelectric Bimorphs of Optimized Shapes
,” Microsyst. Technol.
, 16
(5), pp. 657
–668
.10.1007/s00542-009-1000-510.
Song
, H. J.
, 2009
, “Energy Harvesting Utilizing Single-Crystal PMN-PT Material and Application to a Self-Powered Accelerometer
,” ASME J. Mech. Des.
, 131
(9), p. 091008
.10.1115/1.316031111.
Ferrari
, M.
, 2008
, “Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems
,” Sens. Actuators
, 142
(1), pp. 329
–335
.10.1016/j.sna.2007.07.00412.
Qi
, S.
, Shuttleworth
, R.
, and Oyadiji
, S. O.
, 2009
, “Multiple Resonances Piezoelectric Energy Harvesting Generator
,” ASME
Paper No. SMASIS2009-1455.10.1115/SMASIS2009-145513.
Shahruz
, S. M.
, 2006
, “Design of Mechanical Band-Pass Filters for Energy Scavenging: Multi-Degree-of-Freedom Models
,” Mechatronics
, 16
(9), pp. 523
–531
.10.1016/j.mechatronics.2006.04.00314.
Morris
, D. J.
, Youngsman
, J. M.
, Anderson
, M. J.
, and Bahr
, D. F.
, 2008
, “A Resonant Frequency Tunable, Extensional Mode Piezoelectric Vibration Harvesting Mechanism
,” Smart Mater. Struct.
, 17
(6), p. 065021
.10.1088/0964-1726/17/6/06502115.
Bartsch
, U.
, Gaspar
, J.
, and Paul
, O.
, 2010
, “Low-Frequency Two-Dimensional Resonators for Vibrational Micro Energy Harvesting
,” J. Micromech. Microeng.
, 20
(3
), p. 035016
.10.1088/0960-1317/20/3/03501616.
Jang
, S. J.
, Rustighi
, E.
, Brennan
, M.
, Lee
, Y. P.
, and Jung
, H. J.
, 2010
, “Design of a 2DOF Vibrational Energy Harvesting Device
,” J. Intell. Mater. Syst. Struct.
, 22
(5
), pp. 443
–448
.10.1177/1045389X1039376617.
Tang
, L.
, Yang
, Y.
, and Soh
, C. K.
, 2010
, “Toward Broadband Vibration-Based Energy Harvesting
,” J. Intell. Mater. Syst. Struct.
, 21
(18
), pp. 1867
–1897
.10.1177/1045389X1039024918.
Ferrari
, M.
, Ferrari
, V.
, Guizzetti
, M.
, Marioli
, D.
, and Taroni
, A.
, 2008
, “Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems
,” Sens. Actuators
, 142
(1
), pp. 329
–335
.10.1016/j.sna.2007.07.00419.
Adhikari
, S.
, Friswell
, M. I.
, and Inman
, D. J.
, 2009
, “Piezoelectric Energy Harvesting From Broadband Random Vibrations
,” Smart Mater. Struct.
, 18
(11
), p. 115005
.10.1088/0964-1726/18/11/11500520.
Lee
, S.
, and Youn
, B. D.
, 2011
, “A New Piezoelectric Energy Harvesting Design Concept: Multimodal Energy Harvesting Skin
,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control
, 58
(3
), pp. 629
–645
.10.1109/TUFFC.2011.573326621.
Van Blarigan
, L.
, Danzl
, P.
, and Moehlis
, J.
, 2012
, “A Broadband Vibrational Energy Harvester
,” Appl. Phys. Lett.
, 100
, p. 253904
.10.1063/1.472987522.
Daqaq
, M. F.
, 2010
, “Response of Uni-Modal Duffing-Type Harvesters to Random Forced Excitations
,” J. Sound Vib.
, 329
(18
), pp. 3621
–3631
.10.1016/j.jsv.2010.04.00223.
Sebald
, G.
, Kuwano
, H.
, Guyomar
, D.
, and Ducharne
, B.
, 2011
, “Experimental Duffing Oscillator for Broadband Piezoelectric Energy Harvesting
,” Smart Mater. Struct.
, 20
(10
), p. 102001
.10.1088/0964-1726/20/10/10200124.
Bryant
, M.
, and Garcia
, E.
, 2011
, “Modeling and Testing of a Novel Aeroelastic Flutter Energy Harvester
,” ASME J. Vib. Acoust.
, 133
(1
), p. 011010.10.1115/1.400278825.
Bibo
, A.
, Li
, G.
, and Daqaq
, M. F.
, 2011
, “Electromechanical Modeling and Normal Form Analysis of an Aeroelastic Micro-Power Generator
,” J. Intell. Mater. Syst. Struct.
, 22
(6
), pp. 577
–592
.10.1177/1045389X1140092926.
Singh
, K.
, Michelin
, S.
, and de Langre
, E.
, 2012
, “Energy Harvesting From Axial Fluid-Elastic Instabilities of a Cylinder
,” J. Fluids Struct.
, 30
, pp. 159
–172
.10.1016/j.jfluidstructs.2012.01.00827.
Gammaitoni
, L.
, Vocca
, H.
, Neri
, I.
, Travasso
, F.
, and Orfei
, F.
, 2011
, “Vibration Energy Harvesting: Linear and Nonlinear Oscillator Approaches,” Sustainable Energy Harvesting Technologies—Past, Present and Future, Y. K.
Tan
, ed., InTech, Rijeka, Croatia, Chap. 7.10.5772/2562328.
Aladwani
, A.
, Arafa
, M.
, Aldraihem
, O.
, and Baz
, A.
, 2012
, “Cantilevered Piezoelectric Energy Harvester With a Dynamic Magnifier
,” ASME J. Vib. Acoust.
, 134
(3
), p. 031004
.10.1115/1.400582429.
Lee
, A. J.
, Wang
, Y.
, and Inman
, D. J.
, 2013
, “Energy Harvesting of Piezoelectric Stack Actuator From a Shock Event
,” ASME J. Vib. Acoust.
, 136
(1
), p. 011016
.10.1115/1.402587830.
Castagnetti
, D.
, 2011
, “Fractal-Inspired Multi-Frequency Structures for Piezoelectric Harvesting of Ambient Kinetic Energy
,” ASME J. Mech. Des.
, 133
(11
), p. 111005
.10.1115/1.400498431.
Castagnetti
, D.
, 2012
, “Experimental Modal Analysis of Fractal-Inspired Multi-Frequency Piezoelectric Energy Converters
,” Smart Mater. Struct.
, 21
(9
), p. 094009
.10.1088/0964-1726/21/9/09400932.
Castagnetti
, D.
, 2013
, “A Wideband Fractal-Inspired Piezoelectric Energy Converter: Design, Simulation and Experimental Characterization
,” Smart Mater. Struct.
, 22
(9
), p. 094024
.10.1088/0964-1726/22/9/09402433.
Simulia, 2011, ABAQUS 6.11-2 Users’ Manual
, Dassault Systémes, Waltham, MA.34.
Piezo System, Inc.
, Woburn, MA, www.piezo.com35.
Data Physics Corp., San Jose, CA, http://www.dataphysics.com
36.
Polytec, 2012, “OFV-505 Vibrometer Sensor Head,” Polytec Inc., Irvine, CA, http://www.polytec.com/fileadmin/user_uploads/Products/Vibrometers/OFV-50X/Documents/OM_DS_OFV-505_2012_06_1000_E.pdf
37.
Polytec, 2010, “OFV-5000 Vibrometer Controller,” Polytec Inc., Irvine, CA, http://www.polytec.com/fileadmin/user_uploads/Products/Vibrometers/OFV-5000/Documents/EN/OM_DS_OFV-5000_2010_06_E.pdf
38.
National Instruments, 2014, “Products and Services,” National Instruments Corp., Austin, TX, http://www.ni.com/products/
39.
National Instruments, 2014, “LabVIEW System Design Software,” National Instruments Corp., Austin, TX, http://www.ni.com/labview/
40.
Wang
, H.
, Shan
, X.
, Xie
, T.
, and Fang
, M.
, 2011
, “Analyses of Impedance Matching for Piezoelectric Energy Harvester With A Resistive Circuit
,” International Conference on Electronic and Mechanical Engineering and Information Technology
, (EMEIT
), Harbin, China, Aug. 12–14, pp. 1679–1683.10.1109/EMEIT.2011.602342341.
De Pasquale
, G.
, Somà
, A.
, and Fraccarollo
, F.
, 2012
, “Piezoelectric Energy Harvesting for Autonomous Sensors Network on Safety-Improved Railway Vehicles
,” Proc. Inst. Mech. Eng., Part C
, 226
(4), pp. 1107
–1117
.10.1177/0954406211418158Copyright © 2015 by ASME
You do not currently have access to this content.