Harvesting energy from ambient vibrations in order to power autonomous sensors is a challenging issue. The aim of this work is to compare the power output from an innovative wideband fractal-inspired piezoelectric converter to that from a traditional multicantilever piezoelectric energy converter. In a given frequency range, the converters are tuned on the same eigenfrequencies. The effect of the input acceleration and of the resistive load applied to the converters is investigated experimentally for each of the three eigenfrequencies in the range between 0 and 120 Hz. The fractal-inspired converter exhibits a significantly higher specific output power at the first and third of the eigenfrequencies investigated.

References

1.
Despesse
,
G.
,
Jager
,
T.
,
Chaillout
,
J. J.
,
Léger
,
J. M.
, and
Basrour
,
S.
,
2005
, “
Design and Fabrication of a New System for Vibration Energy Harvesting
,”
2005 PhD Research in Microelectronics and Electronics
, Lausanne, Switzerland, July 25–28, Vol.
1
, pp.
225
228
.10.1109/RME.2005.1543034
2.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
(12), pp.
R175
R195
.10.1088/0957-0233/17/12/R01
3.
Shafer
,
M. W.
, and
Garcia
,
E.
,
2013
, “
The Power and Efficiency Limits of Piezoelectric Energy Harvesting
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021007
.10.1115/1.4025996
4.
Glynne-Jones
,
F.
,
Beeby
,
S. P.
, and
White
,
N. M.
,
2001
, “
Towards a Piezoelectric Vibration-Powered Microgenerator
,”
IEEE Proceedings of Science, Measurement and Technology
, 148(2), pp.
68
72
.10.1049/ip-smt:20010323
5.
Zurn
,
S.
,
Hsieh
,
M.
,
Smith
,
G.
,
Markus
,
D.
,
Zang
,
M.
,
Nam
,
Y.
,
Arik
,
M.
, and
Polla
,
D.
,
2001
, “
Fabrication and Structural Characterization of a Resonant Frequency PZT Microcantilever
,”
Smart Mater. Struct.
,
10
(2), pp.
252
263
.10.1088/0964-1726/10/2/310
6.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J.
,
2003
,“
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
,
26
(11), pp.
1131
1144
.10.1016/S0140-3664(02)00248-7
7.
Erturk
,
A.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
,
18
(2), p.
025009
.10.1088/0964-1726/18/2/025009
8.
Shen
,
D.
,
2007
, “
Analysis of Piezoelectric Materials for Energy Harvesting Devices Under High-g Vibrations
,”
Jpn. J. Appl. Phys.
,
46
(
10
), pp.
6755
6760
.10.1143/JJAP.46.6755
9.
Benasciutti
,
D.
,
Moro
,
L.
,
Zelenika
,
S.
, and
Brusa
,
E.
,
2010
, “
Vibration Energy Scavenging Via Piezoelectric Bimorphs of Optimized Shapes
,”
Microsyst. Technol.
,
16
(5), pp.
657
668
.10.1007/s00542-009-1000-5
10.
Song
,
H. J.
,
2009
, “
Energy Harvesting Utilizing Single-Crystal PMN-PT Material and Application to a Self-Powered Accelerometer
,”
ASME J. Mech. Des.
,
131
(9), p.
091008
.10.1115/1.3160311
11.
Ferrari
,
M.
,
2008
, “
Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems
,”
Sens. Actuators
,
142
(1), pp.
329
335
.10.1016/j.sna.2007.07.004
12.
Qi
,
S.
,
Shuttleworth
,
R.
, and
Oyadiji
,
S. O.
,
2009
, “
Multiple Resonances Piezoelectric Energy Harvesting Generator
,”
ASME
Paper No. SMASIS2009-1455.10.1115/SMASIS2009-1455
13.
Shahruz
,
S. M.
,
2006
, “
Design of Mechanical Band-Pass Filters for Energy Scavenging: Multi-Degree-of-Freedom Models
,”
Mechatronics
,
16
(9), pp.
523
531
.10.1016/j.mechatronics.2006.04.003
14.
Morris
,
D. J.
,
Youngsman
,
J. M.
,
Anderson
,
M. J.
, and
Bahr
,
D. F.
,
2008
, “
A Resonant Frequency Tunable, Extensional Mode Piezoelectric Vibration Harvesting Mechanism
,”
Smart Mater. Struct.
,
17
(6), p.
065021
.10.1088/0964-1726/17/6/065021
15.
Bartsch
,
U.
,
Gaspar
,
J.
, and
Paul
,
O.
,
2010
, “
Low-Frequency Two-Dimensional Resonators for Vibrational Micro Energy Harvesting
,”
J. Micromech. Microeng.
,
20
(
3
), p.
035016
.10.1088/0960-1317/20/3/035016
16.
Jang
,
S. J.
,
Rustighi
,
E.
,
Brennan
,
M.
,
Lee
,
Y. P.
, and
Jung
,
H. J.
,
2010
, “
Design of a 2DOF Vibrational Energy Harvesting Device
,”
J. Intell. Mater. Syst. Struct.
,
22
(
5
), pp.
443
448
.10.1177/1045389X10393766
17.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1867
1897
.10.1177/1045389X10390249
18.
Ferrari
,
M.
,
Ferrari
,
V.
,
Guizzetti
,
M.
,
Marioli
,
D.
, and
Taroni
,
A.
,
2008
, “
Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems
,”
Sens. Actuators
,
142
(
1
), pp.
329
335
.10.1016/j.sna.2007.07.004
19.
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Inman
,
D. J.
,
2009
, “
Piezoelectric Energy Harvesting From Broadband Random Vibrations
,”
Smart Mater. Struct.
,
18
(
11
), p.
115005
.10.1088/0964-1726/18/11/115005
20.
Lee
,
S.
, and
Youn
,
B. D.
,
2011
, “
A New Piezoelectric Energy Harvesting Design Concept: Multimodal Energy Harvesting Skin
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
58
(
3
), pp.
629
645
.10.1109/TUFFC.2011.5733266
21.
Van Blarigan
,
L.
,
Danzl
,
P.
, and
Moehlis
,
J.
,
2012
, “
A Broadband Vibrational Energy Harvester
,”
Appl. Phys. Lett.
,
100
, p.
253904
.10.1063/1.4729875
22.
Daqaq
,
M. F.
,
2010
, “
Response of Uni-Modal Duffing-Type Harvesters to Random Forced Excitations
,”
J. Sound Vib.
,
329
(
18
), pp.
3621
3631
.10.1016/j.jsv.2010.04.002
23.
Sebald
,
G.
,
Kuwano
,
H.
,
Guyomar
,
D.
, and
Ducharne
,
B.
,
2011
, “
Experimental Duffing Oscillator for Broadband Piezoelectric Energy Harvesting
,”
Smart Mater. Struct.
,
20
(
10
), p.
102001
.10.1088/0964-1726/20/10/102001
24.
Bryant
,
M.
, and
Garcia
,
E.
,
2011
, “
Modeling and Testing of a Novel Aeroelastic Flutter Energy Harvester
,”
ASME J. Vib. Acoust.
,
133
(
1
), p. 011010.10.1115/1.4002788
25.
Bibo
,
A.
,
Li
,
G.
, and
Daqaq
,
M. F.
,
2011
, “
Electromechanical Modeling and Normal Form Analysis of an Aeroelastic Micro-Power Generator
,”
J. Intell. Mater. Syst. Struct.
,
22
(
6
), pp.
577
592
.10.1177/1045389X11400929
26.
Singh
,
K.
,
Michelin
,
S.
, and
de Langre
,
E.
,
2012
, “
Energy Harvesting From Axial Fluid-Elastic Instabilities of a Cylinder
,”
J. Fluids Struct.
,
30
, pp.
159
172
.10.1016/j.jfluidstructs.2012.01.008
27.
Gammaitoni
,
L.
,
Vocca
,
H.
,
Neri
,
I.
,
Travasso
,
F.
, and
Orfei
,
F.
,
2011
, “Vibration Energy Harvesting: Linear and Nonlinear Oscillator Approaches,” Sustainable Energy Harvesting Technologies—Past, Present and Future,
Y. K.
Tan
, ed., InTech, Rijeka, Croatia, Chap. 7.10.5772/25623
28.
Aladwani
,
A.
,
Arafa
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2012
, “
Cantilevered Piezoelectric Energy Harvester With a Dynamic Magnifier
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031004
.10.1115/1.4005824
29.
Lee
,
A. J.
,
Wang
,
Y.
, and
Inman
,
D. J.
,
2013
, “
Energy Harvesting of Piezoelectric Stack Actuator From a Shock Event
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
011016
.10.1115/1.4025878
30.
Castagnetti
,
D.
,
2011
, “
Fractal-Inspired Multi-Frequency Structures for Piezoelectric Harvesting of Ambient Kinetic Energy
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111005
.10.1115/1.4004984
31.
Castagnetti
,
D.
,
2012
, “
Experimental Modal Analysis of Fractal-Inspired Multi-Frequency Piezoelectric Energy Converters
,”
Smart Mater. Struct.
,
21
(
9
), p.
094009
.10.1088/0964-1726/21/9/094009
32.
Castagnetti
,
D.
,
2013
, “
A Wideband Fractal-Inspired Piezoelectric Energy Converter: Design, Simulation and Experimental Characterization
,”
Smart Mater. Struct.
,
22
(
9
), p.
094024
.10.1088/0964-1726/22/9/094024
33.
Simulia, 2011, ABAQUS 6.11-2 Users’ Manual
, Dassault Systémes, Waltham, MA.
34.
Piezo System, Inc.
, Woburn, MA, www.piezo.com
35.
Data Physics Corp., San Jose, CA, http://www.dataphysics.com
36.
Polytec, 2012, “OFV-505 Vibrometer Sensor Head,” Polytec Inc., Irvine, CA, http://www.polytec.com/fileadmin/user_uploads/Products/Vibrometers/OFV-50X/Documents/OM_DS_OFV-505_2012_06_1000_E.pdf
37.
Polytec, 2010, “OFV-5000 Vibrometer Controller,” Polytec Inc., Irvine, CA, http://www.polytec.com/fileadmin/user_uploads/Products/Vibrometers/OFV-5000/Documents/EN/OM_DS_OFV-5000_2010_06_E.pdf
38.
National Instruments, 2014, “Products and Services,” National Instruments Corp., Austin, TX, http://www.ni.com/products/
39.
National Instruments, 2014, “LabVIEW System Design Software,” National Instruments Corp., Austin, TX, http://www.ni.com/labview/
40.
Wang
,
H.
,
Shan
,
X.
,
Xie
,
T.
, and
Fang
,
M.
,
2011
, “
Analyses of Impedance Matching for Piezoelectric Energy Harvester With A Resistive Circuit
,”
International Conference on Electronic and Mechanical Engineering and Information Technology
, (
EMEIT
), Harbin, China, Aug. 12–14, pp. 1679–1683.10.1109/EMEIT.2011.6023423
41.
De Pasquale
,
G.
,
Somà
,
A.
, and
Fraccarollo
,
F.
,
2012
, “
Piezoelectric Energy Harvesting for Autonomous Sensors Network on Safety-Improved Railway Vehicles
,”
Proc. Inst. Mech. Eng., Part C
,
226
(4), pp.
1107
1117
.10.1177/0954406211418158
You do not currently have access to this content.