Subsystem energies evolve in transient statistical energy analysis (TSEA) according to a linear system of ordinary differential equations (ODEs), which is usually numerically solved by means of the forward Euler finite difference scheme. Stability requirements pose limits on the maximum time step size to be used. However, it has been recently pointed out that one should also consider a minimum time step limit, if time independent loss factors are to be assumed. This limit is based on the subsystem internal time scales, which rely on their characteristic mean free paths and group velocities. In some cases, these maximum and minimum limits become incompatible, leading to a blow up of the forward Euler solution. It is proposed to partially mitigate this problem by resorting to a local time-stepping finite difference strategy. Subsystems are grouped into sets characterized by different time step sizes and evolve according to them.

References

References
1.
Manning
,
J. E.
, and
Lee
,
K.
,
1968
, “
Predicting Mechanical Shock Transmission
,”
Shock Vib. Bull.
,
37
(
4
), pp.
65
70
, available at: http://www.dtic.mil/dtic/tr/fulltext/u2/667229.pdf.
2.
Lai
,
M. L.
, and
Soom
,
A.
,
1990
, “
Predicition of Transient Vibration Envelopes Using Statistical Energy Analysis Techniques
,”
ASME J. Vib. Acoust.
,
112
(
1
), pp.
127
137
.10.1115/1.2930088
3.
Lai
,
M. L.
, and
Soom
,
A.
,
1990
, “
Statistical Energy Analysis for the Time-Integrated Transient Response of Vibrating Systems
,”
ASME J. Vib. Acoust.
,
112
(
2
), pp.
206
213
.10.1115/1.2930114
4.
Robinson
,
M.
, and
Hopkins
,
C.
,
2011
, “
Transient Statistical Energy Analysis: A Two-Subsystem Model to Assess the Validity of Using Steady-State Coupling Loss Factors for Plate Radiation
,”
International Congress on Sound and Vibration (ICSV18)
,
Rio de Janeiro, Brazil
, July 10–14.
5.
Pinnington
,
R. J.
, and
Lednik
,
D.
,
1996
, “
Transient Statistical Energy Analysis of an Impulsively Excited Two Oscillator System
,”
J. Sound Vib.
,
189
(
2
), pp.
240
264
.10.1006/jsvi.1996.0018
6.
Pinnington
,
R. J.
, and
Lednik
,
D.
,
1996
, “
Transient Energy Flow Between Two Coupled Beams
,”
J. Sound Vib.
,
189
(
2
), pp.
265
287
.10.1006/jsvi.1996.0019
7.
Nefske
,
D. J.
, and
Sung
,
S. H.
,
1989
, “
Power Flow Finite Element Analysis of Dynamic Systems: Basic Theory and Application to Beams
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
111
(
1
), pp.
94
100
.10.1115/1.3269830
8.
Ichchou
,
M. N.
,
Le Bot
,
A.
, and
Jezequel
,
L.
,
2001
, “
A Transient Local Energy Approach as an Alternative to Transient SEA: Wave and Telegraph Equations
,”
J. Sound Vib.
,
246
(
5
), pp.
829
840
.10.1006/jsvi.2001.3647
9.
Sui
,
F. S.
,
Ichchou
,
M. N.
, and
Jezequel
,
L.
,
2002
, “
Prediction of Vibroacoustics Energy Using a Discretized Transient Local Energy Approach and Comparison With TSEA
,”
J. Sound Vib.
,
251
(
1
), pp.
163
180
.10.1006/jsvi.2001.3786
10.
Le Bot
,
A.
,
2002
, “
Energy Transfer for High Frequencies in Built Up Structures
,”
J. Sound Vib.
,
250
(
2
), pp.
247
275
.10.1006/jsvi.2001.3933
11.
Lyon
,
R.
, and
DeJong
,
R.
,
1998
,
Theory and Application of Statistical Energy Analysis
,
2nd ed.
,
RH Lyon Corp
,
Cambridge, MA
.
12.
Kling
,
C.
, and
Scholl
,
W.
,
2011
, “
Transient SEA Studies on the Damping of Coupled Building Elements
,”
Acta Acust. Acust.
,
97
(
2
), pp.
266
277
.10.3813/AAA.918406
13.
Hopkins
,
C.
, and
Robinson
,
M.
,
2011
, “
Using Transient Statistical Energy Analysis to Assess Errors in the Total Loss Factor Determined From Measured Structural Reverberation Times in Building Acoustics
,”
Inter-Noise 2011, Sound Environment as a Global Issue
,
Osaka, Japan
, Sept. 4–7.
14.
Robinson
,
M.
, and
Hopkins
,
C.
,
2011
, “
Predicting the Effect of Coupled Spaces and Structures on Structural Decay Curves of Building Elements Using Transient Statistical Energy Analysis
,”
International Congress on Sound and Vibration (ICSV18)
,
Rio de Janeiro, Brazil
, July 10–14.
15.
Hopkins
,
C.
, and
Robinson
,
M.
,
2012
, “
Using Transient and Steady-State SEA to Quantify Errors in the Measured Structure-Borne Sound Power Input From Machinery With Coupled Reception Plates
,”
International Congress on Sound and Vibration (ICSV19)
,
Vilnius, Lithuania
, July 8–12.
16.
Hopkins
,
C.
, and
Robinson
,
M.
,
2013
, “
On the Evaluation of Decay Curves to Determine Structural Reverberation Times for Building Elements
,”
Acta Acust. Acust.
,
99
(
2
), pp.
226
244
.10.3813/AAA.918606
17.
Robinson
,
M.
, and
Hopkins
,
C.
,
2014
, “
Prediction of Maximum Time-Weighted Sound and Vibration Levels Using Transient Statistical Energy Analysis. Part 1: Theory and Numerical Implementation
,”
Acta Acust. Acust.
,
100
(
1
), pp.
46
56
.10.3813/AAA.918685
18.
Robinson
,
M.
, and
Hopkins
,
C.
,
2014
, “
Prediction of Maximum Time-Weighted Sound and Vibration Levels Using Transient Statistical Energy Analysis. Part 2: Experimental Validation
,”
Acta Acust. Acust.
,
100
(
1
), pp.
57
66
.10.3813/AAA.918686
19.
Robinson
,
M.
, and
Hopkins
,
C.
,
2010
, “
Prediction of Maximum Sound Pressure and Vibration Levels in Heavyweight Building Structures Using Transient Statistical Energy
,”
Inter-Noise 2010, Noise and Sustainability
,
Lisbon, Portugal
, June 13–16, pp.
1242
1252
.
20.
Piperno
,
S.
,
2006
, “
Symplectic Local Time-Stepping in Non-Dissipative DGTD Methods Applied to Wave Propagation Problems
,”
ESAIM-Math. Model. Numer.
,
40
(
5
), pp.
815
841
.10.1051/m2an:2006035
21.
Aarseth
,
S. J.
,
2003
,
Gravitational N-Body Simulations: Tools and Algorithms
,
Cambridge University
, Cambridge, UK.
22.
Díaz
,
J.
, and
Grote
,
M. J.
,
2009
, “
Energy Conserving Explicit Local Time Stepping for Second-Order Wave Equations
,”
SIAM J. Sci. Comput.
,
31
(
3
), pp.
1985
2014
.10.1137/070709414
23.
Logg
,
A.
,
2003
, “
Multi-Adaptive Galerkin Methods for ODEs I
,”
SIAM J. Sci. Comput.
,
24
(
6
), pp.
1879
1902
.10.1137/S1064827501389722
24.
Logg
,
A.
,
2003
, “
Multi-Adaptive Galerkin Methods for ODEs II: Implementation and Applications
,”
SIAM J. Sci. Comput.
,
25
(
4
), pp.
1119
1141
.10.1137/S1064827501389734
25.
Eriksson
,
K.
,
Johnson
,
C.
, and
Logg
,
A.
,
2003
, “
Explicit Time-Stepping for Stiff ODES
,”
SIAM J. Sci. Comput.
,
25
(
4
), pp.
1142
1157
.10.1137/S1064827502409626
26.
Hardy
,
D. J.
,
Okunbor
,
D. I.
, and
Skeel
,
R. D.
,
1999
, “
Symplectic Variable Step Size Integration for N-Body Problems
,”
Appl. Numer. Math.
,
29
(
1
), pp.
19
30
.10.1016/S0168-9274(98)00031-2
27.
Guasch
,
O.
, and
García
,
C.
,
2013
, “
Numerical Local Time Stepping Strategies for Transient Statistical Energy Analysis
,”
International Congress on Sound and Vibration (ICSV20)
,
Bangkok, Thailand
, July 7–11.
28.
Magrans
,
F. X.
,
1993
, “
Definition and Calculation of Transmission Paths Within a SEA Framework
,”
J. Sound Vib.
,
165
(
2
), pp.
277
283
.10.1006/jsvi.1993.1257
29.
Guasch
,
O.
, and
Cortés
,
L.
,
2009
, “
Graph Theory Applied to Noise and Vibration Control in Statistical Energy Analysis Models
,”
J. Acoust. Soc. Am.
,
125
(
6
), pp.
3657
3672
.10.1121/1.3125324
30.
Guasch
,
O.
, and
Aragonès
,
A.
,
2011
, “
Finding the Dominant Energy Transmission Paths in Statistical Energy Analysis
,”
J. Sound Vib.
,
330
(
10
), pp.
2325
2338
.10.1016/j.jsv.2010.11.021
31.
Craik
,
R. J. M.
,
1996
,
Sound Transmission Trough Buildings Using Statistical Energy Analysis
,
Gower
,
London
, UK.
You do not currently have access to this content.