Linear single-stage vibration isolation systems have a limitation on their performance, which can be overcome passively by using linear two-stage isolations systems. It has been demonstrated by several researchers that linear single-stage isolation systems can be improved upon by using nonlinear stiffness elements, especially for low-frequency vibrations. In this paper, an investigation is conducted into whether the same improvements can be made to a linear two-stage isolation system using the same methodology for both force and base excitation. The benefits of incorporating geometric stiffness nonlinearity in both upper and lower stages are studied. It is found that there are beneficial effects of using nonlinearity in the stiffness in both stages for both types of excitation. Further, it is found that this nonlinearity causes the transmissibility at the lower resonance frequency to bend to the right, but the transmissibility at the higher resonance frequency is not affected in the same way. Generally, it is found that a nonlinear two-stage system has superior isolation performance compared to that of a linear two-stage isolator.

References

References
1.
Rivin
,
E. I.
,
2003
,
Passive Vibration Isolation
,
American Society of Mechanical Engineers
,
New York
.
2.
Mead
,
D. J.
,
1998
,
Passive Vibration Control
,
Wiley
,
New York.
3.
Piersol
,
A. G.
, and
Paez
,
T. L.
,
2009
,
Harris' Shock and Vibration Handbook
,
6th ed.
,
McGraw-Hill
, New York.
4.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.10.1016/j.jsv.2006.10.011
5.
Carrella
,
A.
,
Brennan
,
M. J.
,
Kovacic
,
I.
, and
Waters
,
T. P.
,
2009
, “
On the Force Transmissibility of a Vibration Isolator With Quasi-Zero-Stiffness
,”
J. Sound Vib.
,
322
(
4–5
), pp.
707
717
.10.1016/j.jsv.2008.11.034
6.
Alabuzhev
,
P.
,
Gritchin
,
A.
,
Kim
,
L.
,
Migirenko
,
G.
,
Chon
,
V.
, and
Stepanov
,
P.
,
1989
,
Vibration Protecting and Measuring Systems With Quasi-Zero Stiffness
,
Hemisphere Publishing
,
New York
.
7.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.10.1016/j.jsv.2008.01.014
8.
Carrella
,
A.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Lopes
,
V.
, Jr.
,
2012
, “
Force and Displacement Transmissibility of a Nonlinear Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
22
29
.10.1016/j.ijmecsci.2011.11.012
9.
Wang
,
Y.
,
Chen
,
C. G.
,
Hua
,
H. X.
, and
Shen
,
R. Y.
,
2001
, “
Optimal Design of Ship Floating Raft System Power Equipment
,”
Shipbuild. Chin.
,
42
(
1
), pp.
45
49
.10.3969/j.issn.1000-4882.2001.01.008
10.
Lu
,
Z.
,
Brennan
,
M. J.
,
Yang
,
T.
,
Li
,
X.
, and
Liu
,
Z.
,
2013
, “
An Investigation of a Two-Stage Nonlinear Vibration Isolation System
,”
J. Sound Vib.
,
322
(
4–5
), pp.
1456
1464
.10.1016/j.jsv.2012.11.019
11.
Mickens
,
R.
,
1986
, “
A Generalization of the Method of Harmonic Balance
,”
J. Sound Vib.
,
116
(
3
), pp.
273
286
.10.1016/S0022-460X(87)81390-1
12.
Liu
,
L.
,
Thomas
,
J. P.
,
Dowell
,
E. H.
,
Attar
,
P.
, and
Hall
,
K. C.
,
2006
, “
A Comparison of Classical and High Dimensional Harmonic Balance Approaches for a Duffing Oscillator
,”
J. Comput. Phys.
,
215
(
1
), pp.
298
320
.10.1016/j.jcp.2005.10.026
13.
Freudenstein
,
F.
, and
Roth
,
B.
,
1963
, “
Numerical Solution of Systems of Nonlinear Equations
,”
J. ACM
,
10
(
4
), pp.
550
556
.10.1145/321186.321200
14.
Abbott
,
J. P.
,
1978
, “
An Efficient Algorithm for the Determination of Certain Bifurcation Points
,”
J. Comput. Appl. Math.
,
4
(
1
), pp.
19
27
.10.1016/0771-050X(78)90015-3
15.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
2nd ed.
,
Wiley
,
New York
.
You do not currently have access to this content.