Numerical models consisting of two-dimensional (2D) and three-dimensional (3D) uniform grid meshes for the transmission line matrix method (TLM) currently use 2 and 3, respectively, to compensate for the apparent sound speed. In this paper, new compensation factors are determined from a priori simulations, performed without compensation, in 2D and 3D TLM one-section tube models. The frequency values of the first mistuned resonance peaks, obtained from these simulations, are substituted in the corresponding equations for the resonance frequencies in one-section tubes to find the apparent sound propagation speed in the mesh environment and, thus, the necessary compensation. The new factors have been tested in more complex models like a two-tube concatenation model and a realistic magnetic resonance imaging (MRI)-reconstructed human vocal tract (VT) model. Important VT modeling results confirm the improvement over the conventional compensation factors, particularly for frequencies above 4 kHz. Among these results are the identification of the spectral trough at about 5200 Hz caused by the piriform fossa and the application of a pitch extraction algorithm to the 3D TLM output signal, finding a difference smaller than 0.66% relatively to human voice pitch.

References

1.
Johns
,
P. B.
, and
Beurle
,
R. L.
,
1971
, “
Numerical Solution of 2-Dimensional Scattering Problems Using a Transmission-Line Matrix
,”
Proc. IEEE
,
118
(
9
), pp.
1203
1209
.10.1049/piee.1971.0217
2.
Cogan
,
D.
,
O'Connor
,
W.
, and
Pulko
,
S.
,
2006
,
Transmission Line Matrix in Computational Mechanics, CRC Press
,
Taylor & Francis Group
,
Boca Raton, FL
, pp.
102
104
.
3.
Scott
,
I.
, and
de Cogan
,
D.
,
2008
, “
An Improved Transmission Line Matrix Model for the 2D Ideal Wedge Benchmark Problem
,”
J. Sound Vib.
,
311
(
3–5
), pp.
1213
1227
.10.1016/j.jsv.2007.10.009
4.
Kagawa
,
Y.
,
Tsuchiya
,
T.
,
Fujii
,
B.
, and
Fujioka
,
K.
,
1998
, “
Discrete Huygens' Model Approach to Sound Wave Propagation
,”
J. Sound Vib.
,
218
(
3
), pp.
419
444
.10.1006/jsvi.1998.1861
5.
Portí
,
J. A.
, and
Morente
,
J. A.
,
2001
, “
A Three-Dimensional Symmetrical Condensed TLM Node for Acoustics
,”
J. Sound Vib.
,
241
(
2
), pp.
207
222
.10.1006/jsvi.2000.3292
6.
Kagawa
,
Y.
,
Tsuchiya
,
T.
,
Hara
,
T.
, and
Tsuji
,
T.
,
2001
, “
Discrete Huygens' Modelling Simulation of Sound Wave Propagation in Velocity Varying Environments
,”
J. Sound Vib.
,
246
(
3
), pp.
419
439
.10.1006/jsvi.2001.3637
7.
Chai
,
L.
, and
Kagawa
,
Y.
,
2007
, “
Discrete Huygens' Modeling for the Characterization of a Sound Absorbing Medium
,”
J. Sound Vib.
,
304
(
3–5
), pp.
587
605
.10.1016/j.jsv.2007.03.001
8.
Guillaume
,
G.
,
Picaut
,
J.
,
Dutilleux
,
G.
, and
Gauvreau
,
B.
,
2011
, “
Time-Domain Impedance Formulation for Transmission Line Matrix Modelling of Outdoor Sound Propagation
,”
J. Sound Vib.
,
330
(
26
), pp.
6467
6481
.10.1016/j.jsv.2011.08.004
9.
Yiyu
,
T.
,
Inoguchi
,
Y.
,
Sugawara
,
E.
,
Otani
,
M.
,
Iwaya
,
Y.
,
Sato
,
Y.
,
Matsuoka
,
H.
, and
Tsuchiya
,
T.
,
2010
, “
A Real-Time Sound Field Renderer Based on Digital Huygens' Model
,”
J. Sound Vib.
,
330
(
17
), pp.
4302
4312
.10.1016/j.jsv.2011.04.030
10.
Katsamanis
,
A.
, and
Maragos
,
P.
,
2008
, “
A Fricative Synthesis Investigations Using the Transmission Line Matrix Method
,”
J. Acoust. Soc. Am.
,
123
(
5
), p. 374110.1121/1.2935277
11.
Hoefer
,
W. J.
,
1985
, “
The Transmission-Line Matrix Method—Theory and Applications
,”
IEEE Trans. Microwave Theory Tech.
,
33
(
10
), pp.
882
893
.10.1109/TMTT.1985.1133146
12.
Fontana
,
F.
, and
Rocchesso
,
D.
,
2001
, “
Signal-Theoretic Characterization of Waveguide Mesh Geometries for Models of Two-Dimensional Wave Propagation in Elastic Media
,”
IEEE Trans. Speech Audio Process.
,
9
(
2
), pp.
152
161
.10.1109/89.902281
13.
Campos
,
G. R.
, and
Howard
,
D. M.
,
2005
, “
On the Computational Efficiency of Different Waveguide Mesh Topologies for Room Acoustic Simulation
,”
IEEE Trans. Speech Audio Process.
,
13
(
5
), pp.
1063
1072
.10.1109/TSA.2005.852015
14.
Murphy
,
D.
,
Kelloniemi
,
A.
,
Mullen
,
J.
, and
Shelley
,
S.
,
2007
, “
Acoustic Modeling Using the Digital Waveguide Mesh
,”
IEEE Sig. Process. Mag.
,
24
(
2
), pp.
55
66
.10.1109/MSP.2007.323264
15.
Savioja
,
L.
, and
Välimäki
,
V.
,
2003
, “
Interpolated Rectangular 3-D Digital Waveguide Mesh Algorithms With Frequency Warping
,”
IEEE Trans. Speech Audio Process.
,
11
(
6
), pp.
783
789
.10.1109/TSA.2003.818028
16.
Fontana
,
F.
,
2003
, “
Computation of Linear Filter Networks Containing Delay-Free Loops, With an Application to the Waveguide Mesh
,”
IEEE Trans. Speech Audio Process.
,
13
(
5
), pp.
774
782
.10.1109/TSA.2003.818033
17.
Speed
,
M. D. A.
,
2008
, “
Modelling Sound Propagation in the Vocal Tract With a Three-Dimensional Digital Waveguide Mesh
,” Master's thesis, University of York, Heslington, UK.
18.
Speed
,
M.
,
Murphy
,
D.
, and
Howard
,
D.
,
2013
, “
Three-Dimensional Digital Waveguide Mesh Simulation of Cylindrical Vocal Tract Analogs
,”
IEEE Trans. Audio, Speech, Lang. Process.
,
21
(
2
), pp.
449
455
.10.1109/TASL.2012.2224342
19.
Speed
,
M.
,
Murphy
,
D.
, and
Howard
,
D.
,
2014
, “
Modeling the Vocal Tract Transfer Function Using a 3D Digital Waveguide Mesh
,”
IEEE/ACM Trans. Audio, Speech, Lang. Process.
,
22
(
2
), pp.
453
464
.10.1109/TASLP.2013.2294579
20.
Brandão
,
A. S.
,
2011
, “
Modelagem Acústica da Produção da voz Utilizando Técnicas de Visualização de Imagens Médicas Associadas a Métodos Numéricos
,” PhD thesis, Universidade Federal Fluminense - Programa de Pós-Graduação em Engenharia Mecânica (PGMEC), Niterói, RJ, Brazil.
21.
Brandão
,
A. S.
,
Cataldo
,
E.
, and
Leta
,
F. R.
,
2012
, “
Método de Línea de Transmisión Aplicado a la Acústica del Tracto Vocal a Través de un Modelo 3D Reconstruido
,”
Inf. Tecnol.
,
23
(
2
), pp.
167
180
.10.4067/S0718-07642012000200018
22.
Motoki
,
K.
,
2002
, “
Three-Dimensional Acoustic Field in Vocal-Tract
,”
Acoust. Sci. Technol.
,
23
(
4
), pp.
207
212
.10.1250/ast.23.207
23.
Nishimoto
,
H.
, and
Akagi
,
M.
,
2006
, “
Effects of Complicated Vocal Tract Shapes on Vocal Tract Transfer Functions
,”
J. Signal Process.
,
10
(4), pp.
267
270
.
24.
Dai
,
Z.
,
Peng
,
Y.
,
Mansy
,
H. A.
,
Sandler
,
R. H.
, and
Royston
,
T. J.
,
2014
, “
Comparison of Poroviscoelastic Models for Sound and Vibration in the Lungs
,”
ASME J. Vib. Acoust.
,
136
(
5
), p.
050905
.10.1115/1.4026436
25.
Kagawa
,
Y.
,
Shimoyama
,
R.
,
Yamabuchi
,
T.
,
Murai
,
T.
, and
Takarada
,
K.
,
1992
, “
Boundary Element Models of the Vocal Tract and Radiation Field and Their Response Characteristics
,”
J. Sound Vib.
,
157
(
3
), pp.
385
403
.10.1016/0022-460X(92)90523-Z
26.
Ozer
,
M. B.
,
Acikgoz
,
S.
,
Royston
,
T. J.
,
Mansy
,
H. A.
, and
Sandler
,
R. H.
,
2007
, “
Boundary Element Model for Simulating Sound Propagation and Source Localization Within the Lungs
,”
J. Acoust. Soc. Am.
,
122
(
1
), pp.
657
671
.10.1121/1.2715453
27.
Bapat
,
M. S.
,
Shen
,
L.
, and
Liu
,
Y. J.
,
2009
, “
Adaptive Fast Multipole Boundary Element Method for Three-Dimensional Half-Space Acoustic Wave Problems
,”
Eng. Anal. Boundary Elem.
,
33
(
8–9
), pp.
1113
1123
.10.1016/j.enganabound.2009.04.005
28.
Bouillard
,
P.
,
Almeida
,
J. P. M.
,
Decouvreur
,
V.
, and
Mertens
,
T.
,
2008
, “
Some Challenges in Computational Vibro-Acoustics: Verification, Validation and Medium Frequencies
,”
Comput. Mech.
,
42
(
2
), pp.
317
326
.10.1007/s00466-006-0153-7
29.
Snakowska
,
A.
, and
Jurkiewicz
,
J.
,
2010
, “
Efficiency of Energy Radiation From an Unflanged Cylindrical Duct in Case of Multimode Excitation
,”
Acta Acust. Acust.
,
96
(
3
), pp.
416
424
.10.3813/AAA.918294
30.
Joseph
,
P.
,
Nelson
,
P.
, and
Fisher
,
M.
,
1999
, “
Active Control of Fan Tones Radiated From Turbofan Engines. I. External Error Sensors
,”
J. Acoust. Soc. Am.
,
106
(
2
), pp.
766
778
.10.1121/1.427095
31.
Hendee
,
W. R.
, and
Ritenour
,
E. R.
,
2002
,
Medical Imaging Physics
,
Wiley-Liss
,
New York
, p.
312
.
32.
Brandão
,
A. S.
,
Leta
,
F. R.
, and
Cataldo
,
E.
,
2013
, “
3D Mesh Extraction for Transmission Line Matrix (TLM) Modelling
,”
Design and Analysis of Materials and Engineering Structures, Advanced Structured Materials
, Vol.
32
,
Springer
,
Berlin, Germany
, pp.
167
176
.
33.
Brandão
,
A. S.
,
2010
, “
The ModaVox Software—O Modelador da Voz
,” http://www.mec.uff.br/pdfteses/AlexandredeSouzaBrandao2011.pdf
34.
Leta
,
F.
,
Brandão
,
A.
, and
Cataldo
,
E.
,
2011
, “
Semi-Automatic Segmentation of MR and CT Image Sequences Using a Self-Organizing Map and Texture Descriptors
,”
18th International Conference on Systems, Signals and Image Processing (IWSSIP)
, Sarajevo, Bosnia and Herzegovina, June 16–18.
35.
Ibanez
,
L.
, and
Schroeder
,
W.
,
2005
,
The ITK Software Guide 2.4
, 2nd ed.,
Kitware Inc.
, Clifton Park, NY.
36.
Schroeder
,
W.
,
Martin
,
K.
, and
Lorensen
,
B.
,
2002
, The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics
, 3rd ed.,
Kitware Inc.
, Clifton Park, NY.
37.
Si
,
H.
,
2002
, “Tetgen: A Quality Tetrahedral Mesh Generator,” accessed Jan. 20, 2008, http://tetgen.berlios.de
38.
Dang
,
C.
, “Kolourpaint Is a Free, Easy-to-Use Paint Program for KDE”, accessed Oct. 16, 2006, http://kolourpaint.sourceforge.net/
39.
Mattis
,
P.
, and
Kimball
,
S.
, “Gnu Image Manipulation Program,” accessed May 5, 2007, http://www.gimp.org/
40.
Airas
,
M.
,
Pulakka
,
H.
,
Bäckström
,
T.
, and
Alku
,
P.
,
2005
, “
A Toolkit for Voice Inverse Filtering and Parametrisation
,”
9th European Conference on Speech Communication and Technology (Interspeech’2005—Eurospeech)
, Lisbon, Portugal, Sept. 4–8, pp.
2145
2148
.
41.
Rabiner
,
L. R.
, and
Schafer
,
R. W.
,
1978
,
Digital Processing of Speech Signals
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Chap. 3.
42.
Fant
,
G.
, and
Båvegård
,
M.
,
1997
, “
Parametric Model of VT Area Functions: Vowels and Consonants
,”
Speech Music Hearing
,
38
(
1
), pp.
1
20
.
43.
Dang
,
J.
, and
Honda
,
K.
,
1997
, “
Acoustic Characteristics of the Piriform Fossa in Models and Humans
,”
J. Acoust. Soc. Am.
,
101
(
1
), pp.
456
465
.10.1121/1.417990
44.
Cataldo
,
E.
,
Leta
,
F. R.
,
Lucero
,
J.
, and
Nicolato
,
L.
,
2006
, “
Synthesis of Voiced Sounds Using Low-Dimensional Models of the Vocal Cords and Time-Varying Subglottal Pressure
,”
Mech. Res. Commun.
,
33
(
2
), pp.
250
260
.10.1016/j.mechrescom.2005.05.007
45.
Fant
,
G.
,
1970
,
The Acoustic Theory of Speech Production
, 2nd ed.,
Mouton
,
The Hague, The Netherlands
, p.
66
.
46.
Brandão
,
A. S.
,
Cataldo
,
E.
, and
Leta
,
F. R.
,
2007
, “
Um Novo Método Usando Autocorrelação Para Extração da Freqüência Fundamental em Sinais de voz
,”
Tendências em Mat. Apl. Computacional (TEMA)
,
8
(
2
), pp.
191
200
.10.5540/tema.2007.08.02.0191
47.
Johns
,
P.
, and
O'Brien
,
M.
,
1980
, “
Use of the Transmission Line Modelling Method to Solve Nonlinear Lumped Networks
,”
Radio Electron. Eng.
,
50
(
1/2
), pp.
59
70
.10.1049/ree.1980.0006
You do not currently have access to this content.