Vibration characteristics of metamaterial beams manufactured of assemblies of periodic cells with built-in local resonances are presented. Each cell consists of a base structure provided with cavities filled by a viscoelastic membrane that supports a small mass to form a source of local resonance. This class of metamaterial structures exhibits unique band gap behavior extending to very low-frequency ranges. A finite element model (FEM) is developed to predict the modal, frequency response, and band gap characteristics of different configurations of the metamaterial beams. The model is exercised to demonstrate the band gap and mechanical filtering capabilities of this class of metamaterial beams. The predictions of the FEM are validated experimentally when the beams are subjected to excitations ranging between 10 and 5000 Hz. It is observed that there is excellent agreement between the theoretical predictions and the experimental results for plain beams, beams with cavities, and beams with cavities provided with local resonant sources. The obtained results emphasize the potential of the metamaterial beams for providing significant vibration attenuation and exhibiting band gaps extending to low frequencies. Such characteristics indicate that metamaterial beams are more effective in attenuating and filtering low-frequency structural vibrations than plain periodic beams of similar size and weight.

References

1.
Brillouin
,
L.
,
1946
,
Wave Propagation in Periodic Structures
, 2nd ed.,
Dover
,
New York
.
2.
Mead
,
D. J.
,
1970
, “
Free Wave Propagation in Periodically Supported, Infinite Beams
,”
J Sound Vib.
,
11
(
2
), pp.
181
197
.10.1016/S0022-460X(70)80062-1
3.
Cremer
,
L.
,
Heckel
,
M.
, and
Ungar
,
E.
,
1973
,
Structure-Borne Sound
,
Springer-Verlag
,
New York
.
4.
Faulkner
,
M.
, and
Hong
,
D.
,
1985
, “
Free Vibrations of a Mono-Coupled Periodic System
,”
J. Sound Vib.
,
99
(
1
), pp.
29
42
.10.1016/0022-460X(85)90443-2
5.
Mead
,
D. J.
,
1975
, “
Wave Propagation and Natural Modes in Periodic Systems: I. Mono-Coupled Systems
,”
J. Sound Vib.
,
40
(
1
), pp.
1
18
.10.1016/S0022-460X(75)80227-6
6.
Mead
,
D. J.
, and
Markus
,
S.
,
1983
, “
Coupled Flexural-Longitudinal Wave Motion in a Periodic Beam
,”
J. Sound Vib.
,
90
(
1
), pp.
1
24
.10.1016/0022-460X(83)90399-1
7.
Mead
,
D. J.
,
1971
, “
Vibration Response and Wave Propagation in Periodic Structures
,”
ASME J. Manuf. Sci. Eng.
,
93
(
3
), pp.
783
792
.10.1115/1.3428014
8.
Mead
,
D. J.
, and
Yaman
,
Y.
,
1991
, “
The Harmonic Response of Rectangular Sandwich Plates With Multiple Stiffening: A Flexural Wave Analysis
,”
J. Sound Vib.
,
145
(
3
), pp.
409
428
.10.1016/0022-460X(91)90111-V
9.
Gupta
,
G. S.
,
1970
, “
Natural Flexural Waves and the Normal Modes of Periodically-Supported Beams and Plates
,”
J. Sound Vib.
,
13
(
1
), pp.
89
111
.10.1016/S0022-460X(70)80082-7
10.
Liu
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2005
, “
Analytic Model of Phononic Crystals With Local Resonances
,”
Phys. Rev. B
,
71
(
1
), p.
014103
.10.1103/PhysRevB.71.014103
11.
Milton
,
G. W.
, and
Willis
,
J. R.
,
2007
, “
On Modifications of Newton's Second Law and Linear Continuum Elastodynamics
,”
Proc. R. Soc. A
,
463
(
2079
), pp.
855
880
.10.1098/rspa.2006.1795
12.
Huang
,
H. H.
, and
Sun
,
C. T.
,
2011
, “
A Study of Band-Bang Phenomena of Two Locally Resonant Acoustic Metamaterials
,”
Proc. Inst. Mech. Eng., Part N
,
224
(
3
), pp.
83
92
.
13.
Baravelli
,
E.
, and
Ruzzene
,
M.
,
2012
, “
Internally Resonating Lattices for Band Gap Generation and Low-Frequency Vibration Control
,”
J. Sound Vib.
,
332
(
25
), pp.
6562
6579
.10.1016/j.jsv.2013.08.014
14.
Zhu
,
R.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2014
, “
A Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression
,”
J. Sound Vib.
,
333
(
10
), pp.
2759
2773
.10.1016/j.jsv.2014.01.009
15.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2013
, “
Metadamping: An Emergent Phenomenon in Dissipative Metamaterials
,”
J. Sound Vib.
,
332
(
20
), pp.
4767
4774
.10.1016/j.jsv.2013.04.041
16.
Pai
,
P. F.
,
2014
, “
Acoustic Metamaterial Structures Based on Multi-Frequency Vibration Absorbers
,”
Proceedings of the 2014 SPIE Smart Structures Conference
, San Diego, CA, Mar. 8–12, Paper No. 90641X.
17.
Reddy
,
J.
,
2007
,
Theory and Analysis of Elastic Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.