This paper proposes a novel performance degradation assessment method for bearing based on ensemble empirical mode decomposition (EEMD), and Gaussian mixture model (GMM). EEMD is applied to preprocess the nonstationary vibration signals and get the feature space. GMM is utilized to approximate the density distribution of the lower-dimensional feature space processed by principal component analysis (PCA). The confidence value (CV) is calculated based on the overlap between the distribution of the baseline feature space and that of the testing feature space to indicate the performance of the bearing. The experiment results demonstrate the effectiveness of the proposed method.

References

References
1.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2013
, “
Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications
,”
Mech. Syst. Sig. Process.
,
42
(
1
), pp.
314
334
.10.1016/j.ymssp.2013.06.004
2.
Lei
,
Y.
,
He
,
Z.
,
Zi
,
Y.
, and
Chen
,
X.
,
2008
, “
New Clustering Algorithm-Based Fault Diagnosis Using Compensation Distance Evaluation Technique
,”
Mech. Syst. Sig. Process.
,
22
(
2
), pp.
419
435
.10.1016/j.ymssp.2007.07.013
3.
Moosavian
,
A.
,
Ahmadi
,
H.
, and
Tabatabaeefar
,
A.
,
2012
, “
Journal-Bearing Fault Detection Based on Vibration Analysis Using Feature Selection and Classification Techniques
,”
Elixir Control Eng.
,
49
, pp.
9690
9693
.
4.
Zarei
,
J.
, and
Poshtan
,
J.
,
2009
, “
An Advanced Park's Vectors Approach for Bearing Fault Detection
,”
Tribol. Int.
,
42
(
2
), pp.
213
219
.10.1016/j.triboint.2008.06.002
5.
Huang
,
B.
,
Xu
,
W.
, and
Zou
,
X.
,
2013
, “
Rolling Bearing Diagnosis Based on LMD and Neural Network
,”
Int. J. Comput. Sci. Issues
,
10
(
1
), pp.
304
309
.
6.
Jardine
,
A. K.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Sig. Process.
,
20
(
7
), pp.
1483
1510
.10.1016/j.ymssp.2005.09.012
7.
Song
,
B.
, and
Lee
,
J.
,
2013
, “
Framework of Designing an Adaptive and Multi-Regime Prognostics and Health Management for Wind Turbine Reliability and Efficiency Improvement
,”
Int. J. Adv. Comp. Sci. Applications (IJACSA)
,
4
(
2
), pp.
142
149
.10.14569/IJACSA.2013.040221
8.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
A review on Empirical Mode Decomposition on and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. Roy. Soc. London. Ser. A
,
454
(
1971
), pp.
903
995
.10.1098/rspa.1998.0193
9.
Liu
,
B.
,
Riemenschneider
,
S.
, and
Xu
,
Y.
,
2006
, “
Gearbox Fault Diagnosis Using Empirical Mode Decomposition and Hilbert Spectrum
,”
Mech. Syst. Sig. Process.
,
20
(
3
), pp.
718
734
.10.1016/j.ymssp.2005.02.003
10.
Huang
,
N. E.
, and
Shen
,
S. S.
,
2005
,
Hilbert-Huang Transform and Its Applications
,
World Scientific
, Singapore.
11.
Junsheng
,
C.
,
Dejie
,
Y.
, and
Yu
,
Y.
,
2007
, “
The Application of Energy Operator Demodulation Approach Based on EMD in Machinery Fault Diagnosis
,”
Mech. Syst. Sig. Process.
,
21
(
2
), pp.
668
677
.10.1016/j.ymssp.2005.10.005
12.
Lei
,
Y.
,
He
,
Z.
,
Zi
,
Y.
, and
Hu
,
Q.
,
2007
, “
Fault Diagnosis of Rotating Machinery Based on Multiple ANFIS Combination With Gas
,”
Mech. Syst. Sig. Process.
,
21
(
5
), pp.
2280
2294
.10.1016/j.ymssp.2006.11.003
13.
Wu
,
Z.
, and
Huang
,
N. E.
,
2009
, “
Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
,”
Adv. Adapt. Data Anal.
,
1
(
1
), pp.
1
41
.10.1142/S1793536909000047
14.
Lei
,
Y.
,
He
,
Z.
, and
Zi
,
Y.
,
2008
, “
Application of a Novel Hybrid Intelligent Method to Compound Fault Diagnosis of Locomotive Roller Bearings
,”
ASME J. Vib. Acoust.
,
130
(
3
), p.
034501
.10.1115/1.2890396
15.
Yu
,
J.
,
Liu
,
M.
, and
Wu
,
H.
,
2011
, “
Local Preserving Projections-Based Feature Selection and Gaussian Mixture Model for Machine Health Assessment
,”
Proc. Inst. Mech. Eng., C
, pp.
1703
1717
.10.1177/0954406211401268
16.
Yu
,
J.
,
2011
, “
Bearing Performance Degradation Assessment Using Locality Preserving Projections and Gaussian Mixture Models
,”
Mech. Syst. Sig. Process.
,
25
(
7
), pp.
2573
2588
.10.1016/j.ymssp.2011.02.006
17.
Nelwamondo
,
F. V.
,
Marwala
,
T.
, and
Mahola
,
U.
,
2006
, “
Early Classifications of Bearing Faults Using Hidden Markov Models, Gaussian Mixture Models, Mel Frequency Cepstral Coefficients and Fractals
,”
Int. J. Innovative Comput. Inf. Control
,
2
(
6
), pp.
1281
1299
.
18.
Wong
,
M.
,
Jack
,
L.
, and
Nandi
,
A.
,
2006
, “
Modified Self-Organising Map for Automated Novelty Detection Applied to Vibration Signal Monitoring
,”
Mech. Syst. Sig. Process.
,
20
(
3
), pp.
593
610
.10.1016/j.ymssp.2005.01.008
19.
Lee
,
J.
,
Ghaffari
,
M.
, and
Elmeligy
,
S.
,
2011
, “
Self-Maintenance and Engineering Immune Systems: Towards Smarter Machines and Manufacturing Systems
,”
Annu. Rev. Contr.
,
35
(
1
), pp.
111
122
.10.1016/j.arcontrol.2011.03.007
20.
Lei
,
Y.
,
He
,
Z.
, and
Zi
,
Y.
,
2011
, “
EEMD Method and WNN for Fault Diagnosis of Locomotive Roller Bearings
,”
Exp. Syst. Appl.
,
38
(
6
), pp.
7334
7341
.10.1016/j.eswa.2010.12.095
21.
McClintic
,
K.
,
Lebold
,
M.
,
Maynard
,
K.
,
Byington
,
C.
, and
Campbell
,
R.
,
2000
, “
Residual and Difference Feature Analysis With Transitional Gearbox Data
,”
54th Meeting of the Society for Machinery Failure Prevention Technology
, Virginia Beach, VA, May 1–4, pp.
635
645
22.
Lemm
,
J. C.
,
1999
, “
Mixtures of Gaussian Process Priors
,” 9th International Conference on Artificial Neural Networks (
ICANN 99
), Edinburgh, UK, Sept. 7–10, pp.
292
297
.10.1049/cp:19991124
23.
Djurdjanovic
,
D.
,
Lee
,
J.
, and
Ni
,
J.
,
2003
, “
Watchdog Agent—An Infotronics-Based Prognostics Approach for Product Performance Degradation Assessment and Prediction
,”
Adv. Eng. Info.
,
17
(
3
), pp.
109
125
.10.1016/j.aei.2004.07.005
24.
Mclachlan
,
G.
, and
Basford
,
K.
,
1988
,
Mixture Models: Inference and Applications to Clustering
,
Marcel Dekker
,
New York
.
25.
Dempster
,
A. P.
,
Laird
,
N. M.
, and
Rubin
,
D. B.
,
1977
, “
Maximum Likelihood From Incomplete Data Via the EM Algorithm
,”
J. Roy. Stat. Soc., Ser. B
,
39
(
1
), pp.
1
38
.10.2307/2984875
26.
Mclachlan
,
G.
,
2004
,
Discriminant Analysis and Statistical Pattern Recognition
,
Wiley
, London.
27.
Chattopadhyay
,
R.
,
Vintzileos
,
A.
, and
Zhang
,
C.
,
2013
, “
A Description of the Madden–Julian Oscillation Based on a Self-Organizing Map
,”
J. Climate
,
26
(
5
), pp.
1716
1732
.10.1175/JCLI-D-12-00123.1
28.
Kohonen
,
T.
,
2012
, “
Essentials of the Self-Organizing Map
,”
Neural Networks
,
37
, pp.
52
65
.10.1016/j.neunet.2012.09.018
29.
Chattopadhyay
,
M.
,
Dan
,
P. K.
, and
Mazumdar
,
S.
,
2012
, “
Application of Visual Clustering Properties of Self Organizing Map in Machine–Part Cell Formation
,”
Appl. Soft Comput.
,
12
(
2
), pp.
600
610
.10.1016/j.asoc.2011.11.004
30.
Bei
,
J.
,
Lu
,
C.
,
Tao
,
X.
, and
Wang
,
Z.
, “
Performance Assessment for Rolling Bearing Based on EMD and SOM
,”
International Conference on Future Information Technology and Management Science & Engineering
(FITMSE 2012), Hong Kong, Apr. 12-13, pp.
95
99
.
31.
Hong
,
S.
,
Zhou
,
Z.
,
Zio
,
E.
, and
Hong
,
K.
,
2014
, “
Condition Assessment for the Performance Degradation of Bearing Based on a Combinatorial Feature Extraction Method
,”
Digital Signal Process.
,
27
, pp.
159
166
.10.1016/j.dsp.2013.12.010
You do not currently have access to this content.